
Refl ection & Semantics in LISP

RL · 1

Refl ection and Semantics in LISP

Brian Cantwell Smith*
University of Toronto

†© Brian Cantwell Smith 2009 Last edited: December 17, 2009
Draft only (version 0.80) Please do not copy or cite.
Comments welcome brian.cantwell.smith@utoronto.ca
Edited version of a paper fi rst published in the Conference Record of the
Elev-enth Annual acm Symposium on Principles of Programming Languages
(popl), Salt Lake City, Utah, Jan. 1984, pp. 23–35. Th e original version was
also published as Report No. csli-84-8, Stanford University Center for the
Study of Language and Information, July 1984.
*Faculty of Information, University of Toronto, 90 Wellesley St W, Toronto,
Ontario m5s 1c5 Canada.

 1 Abstract
A general architecture is presented, called procedural refl ection,
designed to support self-directed reasoning in a serial programming
language. Th e architecture, illustrated in a revamped dialect of Lisp
called 3-Lisp, involves three steps: (i) reconstructing the semantics of
a language so as to deal with both declarative and procedural aspects
of program meaning; (ii) embedding a theory of the language—in-
cluding of its semantics—within the language; and (iii) defi ning an
infi nite tower of procedural self-models in terms of this embedded
theory, very much like a tower of metacircular interpreters, except
causally-connected to each other in a simple but crucial way. In a
procedurally refl ective architecture, any aspect of process state that
can be described in terms of the theory can be rendered explicit, in

Indiscrete Affairs · IRL · 2

structures accessible for program examination and manipulation.
Procedural refl ection enables a user to defi ne complex programming
constructs by writing, within the programming language, direct an-
alogues of those metalinguistic semantical expressions that would
normally be used to describe them.

It is argued that the concept of procedural refl ection should be
added to any language designer’s tool kit.

2010 Perspective�1

The work reported here, on procedural refl ection and 3-Lisp, started out as what

I expected to be a small design study—part of a (hopelessly ambitious) project I

had undertaken, as a graduate student in the 1970s, to develop a fully refl ective

knowledge representation system. That project, to have been called Mantiq,�
2

never saw the light of day, most pointedly due to my encounter with the funda-

mental inability of Artifi cial Intelligence and computer science to deal adequately

with the challenges of real-world ontology (the nature of objects, ambiguity and

vagueness, relationality and process, etc.). But there were other challenges as

well: another goal was to defi ne the Mantiq structural fi eld (effectively: its object

or memory system—see p. ■■) at a suffi ciently high level of abstraction so as to

be able to “fuse” meta-structural and intensional identity, so that structural iden-

tity could be identifi ed with (and thus used to determine) identity of meaning.
�3

 The idea was to employ a computationally-intensive background relaxation

algorithm to implement the “structural fi eld” (memory system), loosening opera-

tional identity criteria to the point that, for example, the Mantiq analogues of

(�x,y . x+y) and (�a,b . b+a) would appear to be structurally indistinguishable.

I still think that this issue of intensional identifi cation would be a worthwhile

goal to pursue, especially since processing power today would make approximat-

ing it more computationally feasible than it was thirty years ago. At any rate,

against this background of unrealistic dreams, the 3-Lisp project�4
 was intended

as a site to work out the design details of refl ection’s self-referential structure. In

particular, the idea of understanding level-shifting in terms of an idealized un-

bounded “tower” of referential layers struck me then (and still does now) as at

least a good initial idea about the structure of refl ection.�
5
 So I set out to explore

it within the familiar context of Lisp, the “lingua franca” programming language

of the MIT Artifi cial Intelligence Laboratory, where I was enrolled.

Refl ection & Semantics in LISP

RL · 3

 1 Introduction
Among programming languages, Lisp is famous for (among other
things) providing inchoate self-referential capabilities: standard
coding of programs as data structures (s-expressions), a primitive
quotation function (QUOTE), explicit access to interpreter procedures
(EVAL and APPLY), support for meta-circular interpreters, etc. Yet
these capacities have not led to a general understanding of what it is
for a computational system to reason, in substantial ways, about its
own operations and structures.

Th ere are several reasons we have not developed such an account.
First, there is more to reasoning than reference; one also needs a
theory, in terms of which to make sense of the referenced domain.
A computer system able to reason about itself—what I will call a
refl ective system—will therefore need an account of itself embed-
ded within it. Second, there must be a systematic, causally eff ec-
tive relationship between that embedded account and the system
it describes. Without such a connection, the account would be
useless—as disconnected as the words of a hapless drunk who car-
ries on about the evils of inebriation, without realising that his story
applies to himself. Traditional language embeddings in Lisp (meta-
circular interpreters and implementations of other languages) are
inadequate in just this way; they provide no means for the implicit
state of the Lisp process to be refl ected, moment by moment, in the
explicit terms of the embedded account. Th ird, a refl ective system
must be given an appropriate vantage point at which to stand, far
enough away to have itself in focus, and yet close enough to see the
important details.

Th is paper presents a general architecture, called procedural
refl ection, to support self-directed reasoning in a serial program-
ming language. Th e architecture, illustrated in a revamped Lisp
dialect called 3-Lisp, solves all three problems with a single mecha-
nism. Th e basic idea is to defi ne an infi nite tower of procedural self-
models, very much like metacircular interpreters,1 except connected
to each other in a simple but critical way. In such an architecture,
any aspect of a process’ state that can be described in terms of the
theory can be rendered explicit, in program accessible structures, at
an arbitrary points throughout a computation. Furthermore, as I

1. Steele and Sussman (1978b).

Indiscrete Affairs · IRL · 4

will demonstrate, this apparently infi nite architecture can be fi nitely
and effi ciently implemented.

Th e architecture allows the user to defi ne complex programming
constructs (such as escape operators, deviant variable passing pro-
tocols, and debugging primitives) by writing, within the language,
direct analogues of the metalinguistic semantical expressions that
would normally be used to describe them. As is always true in se-
mantics, the metatheoretic descriptions must be phrased in terms
of some particular set of concepts; in the 3-Lisp case I use a theory
based on environments and continuations. A 3-Lisp program, there-
fore, at any point during a computation, can easily obtain represen-
tations of the environment and continuation characterising the state
of the computation at that point. As a result, such constructs as THROW
and CATCH, which must otherwise be provided primitively, can be eas-
ily defi ned in 3-Lisp as user procedures (and defi ned, furthermore,
in code that is almost isomorphic to the �-calculus equations one
normally writes, in the metalanguage, to describe such constructs).
Moreover, these and other analogous control constructs can be de-
fi ned without having to write the entire program in a continuation-
passing style, of the sort illustrated in Steele (1976).

Th e point is not to decide at the outset what should and what
should not be explicit, in other words (in Steele’s example, continua-
tions must be passed around explicitly from the beginning).a Rather,

a) (Note: footnotes indicated with letters rather than numerals, and sans-serif
font, as in this case, are annotative notes added in 2010, rather than material
that appeared in the original paper.)

 This phrasing is somewhat disingenuous, since in a procedurally refl ective dia-
lect of the sort presented here the language designer must decide, advance,
what aspects of the language will be able to be made explicit to user code;
those aspects must then be dealt with, explicitly, in the metatheory in terms
of which the refl ective processor and dialect are themselves defi ned, and then
provided for in the implementation. The original paper would have been bet-
ter phrased if written as follows: “Although the metatheory (and refl ective
processor) must deal explicitly with all of those aspects of the language that
can, at any point, be made explicit, any user code that does not want to deal
with them need not deal with them explicitly. In Steele’s dialect, in contrast, in
order for an aspect to be referred to explicitly at any point, it must be explicit
throughout the program. In a sense, therefore, refl ection can be understood
as providing something like contextual information hiding—or perhaps more

Refl ection & Semantics in LISP

RL · 5

the refl ective architecture provides a method of making some as-
pects of the computation explicit, right in the midst of a computa-
tion, even if they were implicit a moment earlier—and in such a
way that they can be made implicit once again, a moment later. It
provides a mechanism, in other words, when circumstances warrant
it, of stepping back, “pulling information out of the sky,” dealing with
that information appropriately, and then returning into the regular
implicit fl ow of the program.

Th e thesis on which the 3-Lisp defi nition rests is the following:

 Refl ection is simple to build [R]
 on a semantically sound base.

By “semantically sound” I mean more than that the semantics be
carefully formulated. Rather, it is assumed throughout that compu-
tational structures have a semantic signifi cance that transcends their
behavioural import—or, to put this another way, that programs and
computational structures are about something, over and above the
causal eff ects they have on the systems they inhabit. Lisp’s NIL, for
example, evaluates to itself forever—that is its procedural impact.
In addition, however, in some contexts—and partially independent-
ly—it also stands for falsehood. It is that sense of “meaning false” that
I take to be its declarative import. To be considered “semantically
sound,” a reconstruction of Lisp semantics must deal explicitly with
both of these dimensions of the overall signifi cance of computation-
al structures—both procedural and declarative.2

In what follows I will use the phrases “procedural result” (or “what
it returns”) to name that to which its eff ective treatment gives rise,
and “declarative import” for what a structure designates, declaratively.
As well as distinguishing result and import, I will also discriminate

2. Th is distinction between the procedural and declarative aspects of a pro-
gram’s meaning diff ers from the traditional distinction in programming
language theory between operational and denotational semantics. It is a
reconstruction developed within a view that programming languages are
properly to be understood in the same theoretical terms used to under-
stand natural language and mind—not just other computer languages.

accurately, contextually-dependent explicitization of otherwise implicit infor-
mation.”

The next sentence in the text is more accurate, and more useful.

Indiscrete Affairs · IRL · 6

entities, such as numerals and numbers, that are isomorphic but not
identical, if they diff er in respect of either import or result.3 Both dis-
tinctions are instances of the general intellectual hygiene of avoiding
use/mention errors. Lisp’s basic notion of evaluation, I will argue, is
fundamentally confused on both counts—and should be replaced
with independent notions of designation and simplifi cation. Th e
result will be illustrated in a semantically rationalised dialect, called
2-Lisp, based on a simplifying (designation-preserving) term-reduc-
ing processor.

Th e practical import of thesis [R] is demonstrated in a two-stage
argument:

Th e semantically rationalised 2-Lisp is more elegant and 1.
theoretically cleaner than any prior Lisp dialect (including
both Lisp 1.5 and Scheme); and

Th e refl ective dialect 2. 3-Lisp can be very simply defi ned on
top of 2-Lisp—whereas a refl ective version of a non-seman-
tically-rationalised Lisp dialect would be inelegant in a spate
of ways: gratuitously challenging to design, architecturally
baroque, and much more diffi cult to understand.

Th e strategy of presenting the general architecture of procedural re-
fl ection by developing a concrete instance of it was selected on the
grounds that a genuine theory of refl ection (perhaps analogous to
the theory of recursion) would be diffi cult to motivate or defend
without taking this fi rst, more pragmatic, step. In section 10, how-
ever, I will sketch a general “recipe” for adding refl ective capabilities
to any serial language; 3-Lisp is the result of applying this conversion
process to the non-refl ective 2-Lisp.

It is sometimes said that there are only a few constructs from
which programming languages are assembled—including, for ex-
ample, predicates, terms, functions, composition, recursion, abstrac-
tion, a branching selector, and quantifi cation. Th ough diff erent from
these notions (and not defi nable in terms of them), refl ection is per-
haps best viewed as a proposed addition to that family. Given this
view, it is helpful to understand refl ection by comparing it, in particu-

3. Numerals denote numbers, but (at least in ordinary circumstances) num-
bers do not denote at all, not being symbols.

Refl ection & Semantics in LISP

RL · 7

lar, with recursion—a construct with which it shares many features.
Specifi cally, recursion can seem viciously circular to the uninitiated,
and can easily lead to confused implementations if poorly under-
stood. Careful theoretical analysis, however, backed by mathemati-
cal theory, underwrites our ability to use recursion in programming
languages without doubting its fundamental soundness (in fact, for
many programmers, without understanding much about the formal
theory at all). Refl ective systems, similarly, are initially likely to seem
viciously circular (or at least infi nite), and are correspondingly dif-
fi cult to implement without an adequate understanding. Th e intent
of this paper, however, is to argue that refl ection is in fact as well-
tamed a concept as recursion, and potentially as effi cient to use. Th e
long-range goal is not to force programmers to understand the intri-
cacies of designing a refl ective dialect, but rather to enable them to
use refl ection and recursion with equal abandon.

 2 Motivating Intuitions
Before taking up technical details, it will help to layout some moti-
vations and assumptions.

By ‘refl ection’ in its most general sense, I mean the ability of an
agent to reason not only introspectively, about its self and internal
thought processes, but also externally, about its behaviour and situ-
ation in the world. Ordinary reasoning is external in a simple sense:
most of what we think about (chairs, other people, bank accounts,
houses, politics, etc.) is external to us. Th e point of refl ection is to
give an agent a more sophisticated stance from which to consider its
own presence in that embedding world. Th ere is a growing consensus4
that refl ective abilities underlie much of the plasticity with which
we deal with the world, both in language (such as when one says
“Do you understand what I mean?”) and in thought (such as when
one wonders how to be compassionate about delivering bad news).
Common sense suggests that refl ection enables us to master new
skills, cope with incomplete knowledge, defi ne terms, examine as-
sumptions, review and distill experiences, learn from unexpected
situations, plan, check for consistency, and recover from mistakes.

Although this paper focuses on refl ection in programming

4. See Doyle (1980), Weyrauch (1980), Genesereth and Lenat (1980), and
Batali (1983).

Indiscrete Affairs · IRL · 8

languages, most of the driving intuitions on which it is based are
grounded in considerations of human rationality and language.
Tentative steps towards computational refl ection, however, are
emerging in computational practice, and have also had a motivat-
ing impact here. Debugging systems, trace packages, dynamic code
optimizers, runtime compilers, macros, metacircular interpreters,
error handlers, type declarations, escape operators, comments, and
a variety of other programming constructs in one way or another in-
volve structures that refer to or deal with other parts of a computa-
tional system. Th ese practices suggest. as a fi rst step towards a more
general theory, defi ning a limited and rather introspective notion of
“procedural refl ection”: self-referential behaviour in procedural lan-
guages, in which expressions are primarily used instructionally, to
engender behaviour, rather than assertionally, to express judgments
or make claims. It is the hope that the lessons learned in this smaller
task will serve well in the larger account.b

I mentioned at the outset that the general task, in defi ning a refl ec-
tive system, is to embed a theory of the system in the system in such
a way as to support smooth shifting between reasoning directly
about the world and reasoning about that reasoning. Because the
subject matter is reasoning, moreover, not merely language, an ad-
ditional requirement is placed on this embedded theory, also already
mentioned, beyond its being descriptive and true: it must also be
what I will call causally connected, so that the refl ective accounts
of objects, events and states of aff airs are directly tied to those self-
same objects, events and states of aff airs. Th is causal relationship
must run both directions: from event to description, and from de-
scription back to event. Th e goal is almost that of creating a magic
kingdom, where from a cake you can automatically obtain a recipe,
and from a recipe automatically produce a cake.

b) In part this is a reference to Mantiq, but I had also planned to develop a next
dialect in the series, to be called “4-Lisp,” which was to include semantically-
rationalized data structures for (external) reference to the real-world, but
otherwise to retain 3-Lisp’s basic style and control structure. Like Mantiq,
4-Lisp never materialized, due to the challenges of developing representa-
tional regimens adequate to real-world ontology.

Refl ection & Semantics in LISP

RL · 9

Existing logical and mathematical cases of self-reference, includ-
ing both self-referential statements, and models of syntax and proof
theory, involve no causation at all, since there is no temporality or
behaviour (neither logical nor mathematical systems, per se, run).
Eff ective causation is a critical part of any refl ective agent, however.
As a human example, suppose you were to capsize while canoeing
through diffi cult rapids, and were to swim to shore to fi gure out
what you did wrong. In terms of what I will call “upwards” causal
connection, you would need a description of what you were doing at
the moment the mishap occurred; in the concrete exigencies of that
circumstance, merely having a name for yourself, or even a gener-
al description of yourself, would be useless. Similarly, in order for
your on-shore refl ections to be of any subsequent paddling use, you
would need “downwards” causal connection as well; no good will
come from your merely contemplating a disconnected theory of a
wonderfully improved you. As well as stepping back and being able
to think about your behaviour, in other words, you must also be able
to “step forwards,” as it were—to embrace a revised theory of self
and “dive back in under it,” adjusting your behaviour so as to satisfy
the new account. And fi nally, as already mentioned, when you take
the step backwards, to refl ect, you need a place to stand that has just
the right combination of connection and detachment to make this
whole process eff ective and effi cient (it is not an accident that the
moment of self-contemplation is like to occur on shore).

Refl ective computational systems, similarly, must provide both
directions of causal connection, and an appropriate vantage point.
For example, consider a debugging system that accesses stack frames
and other implementation-dependent representations of processor
state, in order to give the user an account of what a program is up to
in the midst of a computation. Note, fi rst, that stack-frames and im-
plementation byte-codes really are just descriptions, in a rather inel-
egant language, of the state of the process they describe. Like any de-
scription, they make explicit some of what was implicit in the process
itself (this is one reason they are useful in debugging). Furthermore,
because of the nature of implementation—because, that is, they are
constitutively enabling descriptions, not detached observations—
they are always available in the implementing code, and always true.
Th ey have these properties because they play a causal role in the

Indiscrete Affairs · IRL · 10

very existence of the process they implement, and therefore auto-
matically solve the “reality-to-description” direction of causal con-
nection. Second, debugging systems must solve the “description-to-
reality” problem, by providing a way of making revised descriptions
of the process true of that process. Th ey carefully provide facilities
for altering the underlying state, based on the user’s description of
what that state should be (i.e., “return from this stack frame immedi-
ately”). Without this “map to reality” direction of causal connection,
the debugging system, like an abstract model, could have no eff ect on
the process it was examining. And fi nally, programmers who write
debugging systems wrestle with the problem of providing a proper
vantage point. In this case, practice has been particularly atheoreti-

cal; it is typical to arrange,
very cautiously, for the de-
bugger to tiptoe around its
own stack frames, in order
to avoid control challenges,
variable clashes and other
unwanted interactions.

As will be evident in the
design of 3-Lisp, all of these
concerns can be dealt with
in a refl ective language in

ways that are simple, theoretically elegant, and implementation-in-
dependent. Th e procedural code in the metacircular processor serves
as the “theory” discussed above; the causal connection is provided
by a mechanism whereby procedures at one level in the refl ective
tower are run in the process one level above (a clean way, essentially,
of enabling a program to defi ne subroutines to be run in its own
implementation). In one sense it is all straightforward; the subtlety
of 3-Lisp has to do not so much with the power of such a mecha-
nism, which once presented is evident, but with how such power can
be fi nitely provided—a question addressed in section 9.

Some fi nal assumptions. I assume a simple serial model of compu-
tation, illustrated in fi gure 1, in which a computational process as a
whole is divided into an internal assemblage of program and data
structures I will collectively call the structural fi eld, coupled with

P
Processor

Structural Field

Figure 1 — A Serial Model of Computation

Refl ection & Semantics in LISP

RL · 11

an internal process that examines and manipulates these structures.
In computer science this inner process (or ‘homunculus’) is typically
called the interpreter; in order to avoid confusion with semantic no-
tions of interpretation, I will call it the processor. While models of
refl ection for concurrent systems could undoubtedly be formulated,
the claim I make here is only that the architecture I will describe is
general for calculi of this serial (i.e., single processor) sort.

I will use the term ‘structure’ for elements of the structural fi eld,
all of which are assumed to be inside the machine; the word will
never be used for abstract mathematical or other “external” entities,
such as numbers, functions, or radios.5 Consequently, I call meta-
structural any structure that designates another structure, reserv-
ing metasyntactic for expressions designating linguistic entities or ex-
pressions.6 Given an interest in internal self-reference, it is clear that
both structural fi eld and processor, as well as numbers and functions
and the like, must be part of the semantic domain. Note also that
the property of being metastructural is to be distinguished from the
orthogonal property of being higher-order, in which terms and argu-
ments may designate functions of any degree (2-Lisp and 3-Lisp will
have both properties).7

5. Although this terminology may be confusing for semanticists who think
of a “structure” as a model, I want to avoid calling internal ingredients ex-
pressions, since the latter term connotes linguistic or notational entities.
What I am aiming for is a concept covering both (i) what we would tra-
ditionally call data structures, and (ii) the “internal representation” of the
program, which we can indirectly use to categorize what we would in ordi-
nary English call the structure of the overall process or agent.

6. Because of the constraints of appropriate causal connection, the meta-
structural capability must be provided by primitive quotation mechanisms,
as opposed simply to being able to model or designate syntax—something
virtually any calculus can do, using for example Gödel numbering.

7. Most programming languages, such as Fortran and Algol 60, are neither
higher-order nor metastructural; the �-calculus is the former but not the
latter, whereas Lisp 1.5 is the latter but not the former (dynamic scoping is
a contextual protocol that, coupled with the meta-structural facilities, al-
lows Lisp 1.5 partially to compensate for the fact that it is only fi rst-order.
At least some incarnations of Scheme, on the other hand, are both higher-
order and metastructural (although Scheme’s metastructural powers are
expressly limited). As will emerge, 3-Lisp’s combination of metastructural
and higher-order properties are essential to its refl ective capabilities.

Indiscrete Affairs · IRL · 12

 3 A Framework for Computational Semantics
Given this background, turn fi rst to questions of semantics. In the
simplest case, semantics is taken to involve a mapping, possibly con-
textually relativized, from a syntactic to semantic domain, as shown
in fi gure 2. Th e mapping � is typically called an interpretation
function (to be distinguished, as noted above, from the standard
computer science notion of an “interpreter”). Interpretation func-
tions are usually specifi ed inductively, with respect to the composi-

tional structure of the
elements of the syn-
tactic domain, which
in turn is typically
taken to be a set of
entities of a syntactic

or linguistic sort. Semantic domains may be of any type whatsoever,
including domains of behaviour; in refl ective systems they will typi-
cally include the syntactic and structural domains as proper parts.
In this paper, to minimize confusion, I will use a variety of diff erent
meta-theoretic variables for diff erent kinds of semantic relationship;
in the general case, I will use the variable s and its cognates (s1, s2, s’,
etc.) to denote symbols or signs, and for any semantic value d will
say that s signifi es d, or conversely that d is the signifi cance or inter-
pretation of s.

It is a fundamental tenet of the proposed approach to refl ection
to recognize that, in a computational setting, there are several dif-
ferent semantic relationships—not diff erent ways of characterizing
one and the same relationship (as operational and denotational
semantical accounts are sometimes taken to be, for example), but
genuinely distinct relationships. Th ese diff erent relationships make for
a more complex semantic framework than is standard in logic and
model theory, as do ambiguities in the use of words like ‘program.’
In many settings, such as in purely extensional functional program-
ming languages, such distinctions are relatively inconsequential, and
can be harmlessly glossed or elided. But in cases of refl ection, self-
reference, and metastructural processing, these distinctions, which
in other circumstances may seem minor, play a much more impor-
tant role.

Since the semantical theory adopted to analyse 3-Lisp will be at

Syntactic Domain Semantic DomainS D

Figure 2 — Simple Semantic Interpretation

Refl ection & Semantics in LISP

RL · 13

least partially embedded within 3-Lisp, choice of semantical frame-
work aff ects the formal architecture and design. My approach, there-
fore, will be to start with basic and simple intuitions, and to identify
a fi ner-grained set of distinctions than are usually employed. I will
briefl y consider the issue of how the contemporary practice of pro-
gramming language semantics would be reconstructed in its terms,
but the complexities involved in answering that question adequately
would take us beyond the scope of the present paper.

Given these preliminaries, I will distinguish three things:

Th e 1. external objects and events in the world in which a com-
putational process is embedded—including both real-world
objects such as cars and caviar, and set-theoretic abstractions
such as numbers and functions (that is: I will adopt a kind
of pan-Platonic idealism about mathematical entities);
Th e 1. internal elements, structures, or processes inside the
computer, including data structures, program representa-
tions, execution sequences and so forth (these are all formal
objects, in the sense that computation is formal symbol ma-
nipulationc); and
Notational 2. or communicational expressions, in some externally
observable and consensually established medium of inter-
action, such as strings of characters, streams of words, or
sequences of display images on a computer terminal.

Th e third set—of expressions—are assumed to include the constit-
uents of communication with the computational process (by human
agents or other computational processes); the middle set are the in-
gredients of the process with which those communicating external
agents and processes interact; and the fi rst (at least presumptively)
are the elements of the world or “subject matter” about which that
communication is held. In the human case, the three domains would
correspond, respectively, to world, mind, and language.

c) Even at the time this paper was published I was critical of the idea that com-
putation could adequately be understood as formal symbol manipulation; I
believe that the phrasing “in the sense that” was meant to signal (rather inef-
fectively) some distancing of my own view from that then-universal assump-
tion. It was not until 1986 that I explicitly argued against such a construal. See
«ref “From Symbols to Knowledge”, and AOS.»

Indiscrete Affairs · IRL · 14

It is a theoretical truism that the third domain of objects—the
elements of communication—are semantic, in the sense of being
meaningful, serving as vehicles of meaning, carrying information, or
some such. In this work I will take the middle set to be semantic

as well—i.e. will assume that inter-
nal structures are bearers of mean-
ing, information, and/or content.
Distinguishing between the seman-
tics of communicative expressions
and the semantics of internal struc-
tures will be one of the main features
of the framework I adopt. It should
be noted, however, that in spite of my
endorsing the reality of internal struc-
tures, and assuming the reality of the
embedding world, it is nonetheless
true that in the cases I will consider
(i.e., ignoring sensors and manipula-
tors), the only things that actually
happen with computers are commu-
nicative interactions. For example,
in a case that I might informally de-

scribe as “asking my Lisp machine what the square root of two is,”
what in fact happens, concretely, is that I type an expression such as
(SQRT 2.0) at the computer, and receive back some other expression,
probably quite like 1.414, by way of response. What matters, for our
purposes, is that the interaction is carried out entirely in terms of
expressions; no structures, numbers, or functions are part of the in-
teractional event (in particular, it is metaphysically precluded, given
the presumed philosophy of mathematics, for a computer to return
the square root of two). Th e denotation or participation or relevance
of any of more abstract objects, such as numbers, must be inferred
from, and mediated through, the communicative act.

I will begin to analyse this complex of relationships using the ter-
minology suggested in fi gure 3. By �, very simply, I will refer to the
relationship between external notational expressions and internal
structures; by ‘�’ I will refer to the processes and behaviours those

Structural Field

Figure 3 — Semantic Relationships
in a Computational Process

Refl ection & Semantics in LISP

RL · 15

structural fi eld elements engender (thus ‘�’ is inherently temporal);
and by ‘�’ I will to the entities in the world that they designate. For
mnemonic convenience, relations ‘�’ and ‘�’ have been named to sug-
gest philosophy and psychology, respectively, since a study of ‘�’ is a
study of the relationship between structures and the world, whereas
a study of ‘�’ is a study of the relationships among symbols, all of
which are “within the head” (of person or machine).

Since computation is inherently temporal, the semantic analysis
must deal explicitly with relationships across the passage of time. In
fi gure 4, therefore, I have unfolded the diagram of fi gure 3 across a
unit of time, so as to get at a full confi guration of these relationships.
Entities nl and n2 are intended to be linguistic or communicative en-
tities, as described above;8 sl and s2 are internal structures over which
internal processing is defi ned. Th e relationship �, which I will call
internalisation (and its inverse, �-1, externalisation) relates these
two kinds of object, as is appropriate given the device or process in

question (thus
I will say, in
addition, that
nl notates sl).
For example, in
fi rst order logic
nl and n2 would
be expressions,
written with
letters, spaces,
‘�’ and ‘�’
signs, etc.; to
the extent that
sl and s2 could
be said to exist,

in logic, they would be something like abstract derivation tree types
of the corresponding fi rst-order formulae. In Lisp, as we will see,
nl and n2 would be the input and output expressions, written with
letters and parentheses, or perhaps with boxes and arrows; sl and s2
would be the corresponding cons cells in the s-expression heap.

8. Th at is: the variable ‘n1’ and its cognates are used in this text is as a meta-
level variable to denote a linguistic or communication expression; etc.

Structure S1Structure S1

-1

Notation N1 Notation N2

Figure 4 — A Framework/or Computational Semantics

Indiscrete Affairs · IRL · 16

In contrast, dl and d2 are elements or fragments of the embed-
ding world, and � is the relationship that internal structures bear
to them. �, in other words, is semantics’ so-called “interpretation
function” that makes explicit what I will call the designation of
internal structures (not, note, the designation of linguistic expres-
sions or terms, which would be described by � º �). Th e relation-
ship between my mental token repre senting T. S. Eliot, for example,
and the poet himself, would be formulated as part of �, whereas
the relationship between the public name ‘T. S. Eliot’ and the poet
would be expressed as �(�(“T. S. Eliot”)) = T. S. Eliot. Similarly, �
would relate an internal “numeral” structure (say, the numeral 3) to
the corresponding number—if I can be permitted to use the word
‘numeral’ to refer to internal structures as well as to external expres-
sions. As mentioned at the outset, my focus on � is evidence of the
permeating semantical assumption that all structures have designa-
tions—or, to put it another way, that in the computational realm I
am considering, all structures are taken to be symbols.9

In contrast to � and �, the relation � always (and necessarily,
since it does not have access to anything else) relates some internal
structures to others, or to behaviours over them. To the extent that
it would make sense to talk of a � in logic, it would be approximately
the formally computed derivability relationship (�); in a natural de-
duction or resolution schemes, � would be a subset of the deriv-
ability relationship, picking out the particular inference procedures
those regimens adopt. In a computational setting, however, � would
be the function computed by the processor (i.e., in traditional Lisp
it is evaluation).

9. For what I might call declarative languages, there is a natural account of the
relationship between linguistic expressions and in-the-world designations
that need not make crucial reference to issues of processing (to which I will
turn in a moment). It is for such languages, in particular, that the composi-
tion � º � (call it �'), would be formulated. For obvious reasons, it is �'
that is typically studied in mathematical model theory and logic, since those
fi elds do not deal in any crucial way with the active use of the languages they
study. In logic, for example, �' would be the interpretation function of stan-
dard model theory. In what I will call computational languages, on the other
hand, questions of processing (�) do arise for all aspects of signifi cance—
and so, in a vaguely Wittgensteinian sense, �' cannot in general be expli-
cated independent of �.

Refl ection & Semantics in LISP

RL · 17

Th e relationships �, �, and � have diff erent relative importance
in diff erent semiotic disciplines, and relationships among them have
been given diff erent names. For example, � is usually ignored in
logic, and there is little tendency to view the study of �, called proof
theory, as semantical, although it is always related to semantics, as in
proving soundness and completeness.10 In addition, there are a vari-
ety of “independence” claims that have arisen in diff erent fi elds. Th at
� does not uniquely determine �, for example, is the “psychology
narrowly construed” and concomitant methodological solipsism of
Putnam, Fodor, and others.11 Th at � is usually specifi able composi-
tionally and independently of � or � is essentially a statement of the
autonomy thesis for language. Similarly, when � cannot be specifi ed
independently of �, computer science will say that a programming
language “cannot be parsed except at runtime” (a property exempli-
fi ed by Teco and the fi rst versions of Smalltalk12).

A thorough analysis of these semantic relationships, however,
and of the relationships among them, is the subject of a diff erent
paper. For present purposes I need not take a stand on which of �,
�, or � has a prior claim on being “semantics,” but it will help to have
some English terminology for some of these relations, in order not
to have to devolve into formalism. For discussion, therefore, I will
refer to the “�” of a structure as its declarative import, and to its
“�” as its procedural consequence.d It is also convenient to identify
some of the situations when two of the six entities (nl, n2, sl, s2, dl and
d2) are identical. In particular, I will say that sl is self-referential if

10. Soundness and completeness can be expressed as �(s1,s1) � [�(s1) � �(d1)],
if one takes � to be a relation, and � to be an inverse satisfaction relation-
ship between sentences and possible worlds that satisfy them.

11. See Fodor (1980).
12. Teco (“text editor and corrector”) was a string-processing language which

ran on the “Incompatible Time Sharing Systems” (its) at the mit Artifi cial
Intelligence Lab in the 1970s. It is now remembered primarily as the pro-
gramming language in which the initial versions of the still-popular text
editor emacs were written. Smalltalk, an object-centered, dynamically-
typed, “refl ective” programming language, was developed at the Xerox Palo
Alto Research Center (parc) by Alan Kay and his colleagues, also during
the 1970s.

d) «This was already said. Check that—but also check all the terminology used
for these relations; there is redundancy and confusion throughout.»

Indiscrete Affairs · IRL · 18

sl = dl, that � de-references sl if s2 = dl, and that � is designation-
preserving (at sl) when dl = d2 (as it always is, for example, in the
�-calculus, where at least in the standard model �—some combina-
tion of � and 	-reduction—does not alter the interpretation).

It is natural to ask what a program is, what programming language
semantics gives an account of, and how (this is a related question)
� and � relate in the programming language case. An adequate an-
swer to this, however, introduces a maze of complexity that I will
have to defer to future work. To appreciate some of the diffi culties,
note that there are two diff erent ways in which we can conceive of
a program, suggesting diff erent semantical analyses.e On the one
hand, a program can be viewed as a linguistic object that describes
or signifi es a computational process consisting of the data structures
and activities that result from (or arise during) its execution. In this
sense a program is primarily a referential or communicative entity—
not so much playing a causal role within a computational process
so much as existing outside the process and representing it. Putting
aside for a moment the question of whom it is meant to communi-
cate to, I would simply that on such a reading a program is in the
domain of �, and, roughly, that � º � of such an expression would
be the computation described. Th e same characterization would, of
course, apply to a specifi cation; indeed, the only salient diff erence
might be that a specifi cation would avoid using non-eff ective con-
cepts in describing behaviour. One would expect specifi cations to be
stated in a declarative language (in the sense defi ned in footnote ■■),
since specifi cations are not, per se, intended to be executed or run,
even though they speak about behaviours or computations. Th us,
for program or specifi cation b describing computational process c,
we would have (for the relevant language) something like �(�(b))=c.
If b were a program, there would be an additional constraint that the
program somehow play a causal role in engendering the computa-
tional process c that it is taken to describe.

Th ere is an alternative conception, however, which places the
program inside the machine, as a causal participant in the behav-

e) «This may be the fi rst occurrence of my on-going attention to the differenc-
es between and among specifi cational, ingrediential, and communicational
views of programs. Refer back to the 2010 perspective at the outset; and for-
ward to the places where I have the pictures, etc.»

Refl ection & Semantics in LISP

RL · 19

iour that results. Th is view is closer to the one implicitly adopted
in fi gure 1, and I believe that it is closer to the way in which a Lisp
program must be semantically analysed if we are to understand Lisp’s
emergent refl ective properties. In some ways this diff erent view has
a von Neumann character, in the sense of equating program and
data. On this view, the more appropriate equation would seem to be
�(�(b))=c, since one would expect the processing of the program to
yield the appropriate behaviour. One would seem to have to recon-
cile this equation with that in the previous paragraph, although it is
not clear that this would be possible.f

Disentangling these points will require further work. What I can
say here is that programming language semantics seems to focus on
what, in the terminology I am using, would seem be an amalgam of
� and �. For our purposes I need only note that we will have to keep
� and � strictly separate, while recognising (because of context rela-
tivity and non-local eff ects) that just because they are distinct does
not mean they are independent. Formally, I would need to specify a
general signifi cance function
,13 which recursively specifi es � and
� together. In particular, given any structure s1, and any state of the
processor and the rest of the fi eld (encoded, say, in an environment,
continuation, and perhaps a store),
 will specify the structure, con-
fi guration, and state that would result (i.e., it will specify the use of
s1), and also the signifying relationship that s1 bears to the world. For
example, given a Lisp structure of the form (+ 1 (PROG (SETQ A 2) A)),

would specify that the whole structure designated the number three,
that it would “return” (i.e., that its procedural consequence would
be) the numeral 3, and that the machine would be left in a state in
which the binding of the variable A was changed to the (structural)
numeral 2.g

13. Th is is what was done in «ref tr».
f) «I believe this last sentence is either confused or wrong. Think about it and fi x

as appropriate.»

g) Computer science talks about a variable being “bound to” something—
namely, to its value—though, as evident in the semantical reconstruction be-
ing carried out here, that usually means to a co-referential structure. Strictly
speaking, that is, a programming language variable would be bound to a
numeral, not to a number—and should be so described, in contexts in which
the differences between numerals and numbers are signifi cant. In mathemat-

Indiscrete Affairs · IRL · 20

Before leaving semantics completely, it is instructive to apply
these various distinctions to traditional Lisp. I said above that all
interaction with computational processes is mediated by commu-
nication; this can be stated in the present terminology by noting
that � and �-1 (internalization and externalization) are a part of any
interaction. Th us Lisp’s “READ-EVAL-PRINT” loop is mirrored in this
analysis as an iterated version of �-1 º � º � (i.e., if n1 is an expres-
sion that you type as input to a Lisp system, returning n2 as out-
put, then n2 = �-1(�(�(n1))). Th e Lisp structural fi eld, as it happens,
has an extremely simple compositional structure, based on a binary
directed graph of atomic elements called cons-cells, extended with
atoms, numerals, and so forth. Th e linguistic or communicative ex-
pressions that we use to represent Lisp programs—the formal lan-
guage objects that we edit with our editors and print in books and
on terminal screens—is a separate lexical (or sometimes graphical)
entity with its own syntax (parentheses and identifi ers in the lexical
case; boxes and arrows in the graphical).

In Lisp there is a relatively close correspondence between ex-
pressions and structures; it is one-to-one in the graphical case, but
the standard lexical notation is both ambiguous (because of shared
tails) and incomplete (because of its inability to represent cyclical
structures). Th e correspondence need not have been as close as it
is; the process of converting from external syntax or notation to in-
ternal structure could involve arbitrary amounts of computation, as
evidenced by read macros and other syntactic or notational devices.
But the important point is that it is structural fi eld elements, not no-
tations, over which most Lisp operations are defi ned. If you type
“(RPLACA '(A . B) 'C)”, for example, the processor will (as expected)
fi rst create and then change the CAR (fi rst element) of a fi eld structure;

ics and logic, variables are likely, if bound to anything, to be bound to num-
bers—i.e., to what is here being called declarative import. Moreover, it is also
more common in logic and mathematics to describe a variable as “bound by”
something—namely, bound by quantifi ers, scoping constructs, etc. This is just
one small instance of the general phenomenon of computer science’s using,
as technical terminology, vocabulary and phrasings derived from logic, but in
its own distinct ways. Sometimes, as here, the differences are subtle, and not
usually distracting; sometimes, as with the word ‘semantics,’ they are major,
and cause of considerable confusion. See AOS.

Refl ection & Semantics in LISP

RL · 21

it will not back up your terminal and erase the eleventh character of
the expression that you typed as input (if that were even physically
possible). Similarly, Lisp atoms are fi eld elements, not to be con-
fused with their lexical representations (sometimes called ‘P-names’
or “print-names”). Again, quoted forms such as (QUOTE ABC) designate
structural fi eld elements, not input strings. Th e form (QUOTE ___), in
other words, is a structural quotation operator; notational quotation
is diff erent, usually notated with string quotes (as in “ABC”).14

 4 Evaluation Considered Harmfulh

Th e claim that all three relationships (�, �, and �) fi gure crucially in
an account of Lisp is not a formal one. It makes an empirical claim on
the minds of programmers, and cannot be settled by pointing to any
current theories or implementations. Arguments in its behalf would
point to the fact that Lisp’s numerals are universally taken to desig-
nate numbers, and that the atoms T and NIL (at least in predicative
contexts) are similarly understood to stand for truth and falsity—no
one could learn Lisp without learning these facts, and the behaviour
of Lisp systems is only intelligible on such an assumption.i In what
follows I will therefore state, without qualifi cation, that ‘3’ (i.e., the

14. Th e string “(QUOTE ABC)” notates a structure that designates another struc-
ture that in turn could be notated with the string “ABC”. Th e string “ “ABC“ ”,
on the other hand, notates a structure that designates the string “ABC” di-
rectly.

h) This section title is a play on Edsger W. Dijkstra’s legendary “GO TO Statement
Considered Harmful” (Communications of the ACM, Vol. 11, No. 3, March
1968, pp. 147–48). No computer scientist in the 1980s would have failed
to recognize the illusion; the Communications of the ACM (Association for
Computing Machinery) was the première professional computer science jour-
nal at the time, and Dijkstra’s letter was widely taken to have inaugurated
serious theoretical analysis of programming. Cf. this note from the History of
Computing Project:

“In 1968 Edsger Dijkstra laid the foundation stone in the march towards
creating structure in the domain of programming by writing, not a schol-
arly paper on the subject, but instead a letter to the editor entitled “GO TO
Statement Considered Harmful”. (Comm. ACM, August 1968) The move-
ment to develop reliable software was underway.”

See http://www.thocp.net/biographies/dijkstra_edsger.htm

i) «Put in a pointer to (and discussion of) the “normatively governed effective
mechanism” construal of logic and other intentional systems in other papers.»

Indiscrete Affairs · IRL · 22

structural numeral notated by the string character “3”) designates
three; that T designates truth, that (EQ 'A 'B) designates falsity, etc.
In a similar spirit, I will claim that the structure (CAR '(A . B)) desig-

nates the atom A; this is manifested by the fact
that people, in describing Lisp, use expres-
sions such as “If the CAR of the list is LAMBDA,
then it is a procedure,” where the ingredient
term “the CAR of the list” is used as an English
referring expression—specifi cally as a singular
term—not as a quoted fragment of Lisp (and
English, or natural language generally, is by
defi nition the locus of what designation is).
(QUOTE A), or 'A, is another way of naming or
designating the atom a; that is just what quo-
tation is. By the same token, I will take such
atoms as CAR and + to name or designate the
obvious corresponding functions.

What, then, is the relationship between the
declarative import (�) of Lisp structures and
their procedural consequence (�)? Inspection
of the superfi cially rather bewildering data
given in fi gure 5 shows that Lisp obeys the fol-

lowing constraint, where S is the domain of structural fi eld elements
(more must be said about � in those cases where �(�(s)) = �(s),
since the identity function would satisfy this equation):

 �s � S if �(s) � S then �(s) = �(s) [1]
 else �(�(s)) = �(s)

All Lisps, including Scheme,15 in other words, de-reference any struc-
ture whose designation is another structure, but will return a co-
designating structure for any whose designation is external to the
machine. Th is regularity, which generates the variety of cases illus-
trated in fi gure 5, is depicted in fi gure 6. Whereas evaluation is often
thought to correspond to the semantic interpretation function �, in
other words, and therefore to have type expressions values, evalua-

15. Steele and Sussman (1978a).

(EQ 'A 'B) NIL

falsity!

CDR

the CDR function

???

'X

X

3

three

'3

A

(CAR '(A . B))

T

truth!

3(+ 1 2)

three

Figure 5 — Lisp Evaluation vs.
Designation: Some Examples

Refl ection & Semantics in LISP

RL · 23

tion in Lisp is often a desig-
nation-preserving operation.
In fact, it is a metaphysical
fact that no computer can
evaluate a structure such
as (+ 2 3), if that means “re-
turning what is designated,”
at least on the Platonist
understanding of number I
am working with, any more
than it can evaluate the
name Hesperus, or than it is
likely to be able to evaluate
the name peanut butter.

I take it as self-evident
that obeying equation [1]
is anomalous. It implies,

among other things, that even if in a case in which one knows what y
is, and knows that x evaluates to y, one still does not know what x des-
ignates. It also licenses such semantic anomalies as (+ 1 '2), which—
contrary, I would argue, both to common and to theoretical sense—
will evaluate to (the structure!) 3 in all extant Lisps. Informally, I
will say that Lisp’s evalua-
tor crosses semantical levels,
and therefore obscures the
diff erence between simpli-
fi cation and designation.
Given that processors can-
not always de-reference
(since by assumption the
co-domain is limited to
the structural fi eld), the
only semantically consistent non-level-crossing behaviour they can
exhibit in general is to preserve designation. It seems, therefore, that
they should always simplify, and therefore obey the following con-
straint (diagrammed in fi gure 7):

�s � S �(�(s)) = �(s) � normal-form(�(s)) [2]

Internal Structures

… edge of the machine

External World

Figure 6 — Lisp’s “De-reference
if You Can” Evaluation Protocol

S1 S2

D

Normal Form

Figure 7 — A Normalisation Protocol

Indiscrete Affairs · IRL · 24

Th e content of this equation clearly depends entirely on the content
of the predicate “normal-form” (if “normal-form” were lx.true, then
� could be the identity function). In the �-calculus, the notion of
normal-formedness is defi ned in terms of the processing protocols
(�- and 	-reduction), but I cannot use any such defi nition here, on
threat of circularity. Instead, I will say that a structure is in normal
form if and only if it satisfi es the following three independent condi-
tions:

It is 1. context-independent, in the sense of having the same
declarative (�) and procedural (�) import independent of
the context of use;

It is 2. side-effect-free, implying that the processing of the
structure will have no eff ect on the structural fi eld, proces-
sor state, or external world; and

It is 3. stable, meaning that it must simplify to itself in all con-
texts, so that � will be idempotent.

We would then have to prove, given a language specifi cation, that
equation [2] is satisfi ed (as it is in the case of 2-Lisp and 3-Lisp)

Two notes. First, I will not use the terms ‘evaluate’ or ‘value’ for
expressions or structures, referring instead to normalisation for �,

and designation for
�. I will sometimes call
the result of normalis-
ing a structure its re-
sult or what it returns.
Th ere is also a prob-
lem with the terms ‘ap-
ply’ and ‘application.’ In
standard Lisps, APPLY is
(the name of) a func-
tion from structures
and arguments onto
values, but like ‘evalu-
ate’, its use is rife with

use/mention confusions. As illustrated in fi gure 8, I will use ‘apply’
for mathematical function application—i.e., to refer to a relation-

FD function
designator AD argument

designator VD value
designator

F function A argument V value

Application

Reduction

Figure 8 —Application vs. Reduction

Refl ection & Semantics in LISP

RL · 25

ship between a function, some arguments, and the value of the func-
tion applied to those arguments—and the term ‘reduce’ to relate
the three structures that designate functions, arguments, and values,
respectively. Note that this terminological practice retains use of the
term ‘value’ (as, for example, in the previous sentence), but only to
name that entity onto which a mathematical function maps its argu-
ments.

Second, the idea of a normalising processor depends on the idea
that symbolic structures have a semantic signifi cance prior to, and
independent of, the way in which they are treated by the processor.j
Without this assumption we could not even ask about the semantic
character of the Lisp (or any other) processor, let alone suggest a
cleaner version. Without such an assumption, more generally, one
cannot say that a given processor is correct, or coherent, or inco-
herent; it would merely be what it is. Given one account of what
it did (such as an implementation), one could compare that to an-
other account (such as a specifi cation). One could also prove that
it had certain properties, such as that it always terminated, or that
it used resources in certain ways. One could even prove properties
of programs written in the language it runs (from a specifi cation of
the algol processor, for example, one might prove that a particular
program sorted its input). However, none of these questions deal
with the question I am taking to be more fundamental: about the se-
mantical nature of the processor itself. I am not satisfi ed to say that
the semantics of (CAR '(A . B)) is A because that is how the processor is
defi ned; rather, I want to say that the processor was defi ned that way
because A is what (CAR I (A . B)) designates. Semantics, in other words,
should be a tool with which to judge systems, not merely a method
of describing them.

 5 2·Lisp: A Semantically Rationalised Dialect
Having torn apart the notion of evaluation into two constituent no-
tions (designation and simplifi cation), we need to start at the be-
ginning, and build Lisp over again. What I am calling 2-Lisp is a
proposed result. Some summary comments can be made.

j) «Talk about this in relation to Amala, Mike Dixon’s thesis, errors in the defi ni-
tion of factorial, etc.—and to subsequent semantical inquiry (also to logic).»

Indiscrete Affairs · IRL · 26

First, I have reconstructed what I call the category structure
of Lisp, requiring that the categories into which Lisp structures are
sorted, for various purposes, “line up” (giving the dialect a property
I will call category alignment). More specifi cally, Lisp expressions
are sorted into categories by notation, structure (atoms, cons pairs,
numerals), procedural treatment (the “dispatch” inside the traditional
EVAL), and declarative semantics (the type of object designated). As
illustrated in fi gure 9, these categories are traditionally not aligned;
lists, a derived structure type, include some of the pairs and one atom
(NIL); the procedural regimen (�) treats some pairs (those with LAMB-
DA in the CAR) in one way, most atoms (except T and NIL) in another,
and so forth. In 2-Lisp, in contrast, I have required the notational,
structural, procedural, and semantic categories to correspond, as
much as practicable, one-to-one, as illustrated in fi gure 10 (this is
a bit of an oversimplifi cation, since atoms and pairs—representing
arbitrary variables and arbitrary function application structures or
redexes—can designate entities of any semantic type).

Lexical Structural Procedural Declarative

Numerals
Labels

Dotted pairs

Numerals
Atoms
Pairs
Lists

T or NIL
Numerals

Atoms
(Lambda…)
(quote …)

Lists
Applications

Truth values
Numbers

Functions
S-expressions

Sequences“Lists”

✘

Figure 9 — Th e Category Structure of Lisp 1.5

Lexical Structural Procedural Declarative

Digits
$T or $F

{closure…}

Numerals
Boolens
Closures

Rails Rails
Handles
Atoms
Pairs

Atoms
Pairs

Normal-form
Normal-form

Normal-form

Normal-form

Truth values
Numbers

Functions

Structures
Sequences

'…
[A1 … Ak]

alphanumeric
(A1 . A2)

Figure 10 — Th e Category Structure of 2-Lisp and 3-Lisp

Refl ection & Semantics in LISP

RL · 27

2-Lisp is summarized in the sidebar (“An Overview of 2-Lisp,”
starting below); some additional comments can be made here. Like
most mathematical and logical languages, 2-Lisp is almost entire-
ly “declaratively extensional”. Th us (+ 1 2), an abbreviation for
(+ . [1 2]), designates the value of the application of the function
designated by the atom + to the sequence of numbers designated by
the rail [1 2]. In other words, (+ 1 2) designates the number three,
of which the numeral 3 is the normal-form designator; (+ 1 2) there-
fore normalises to the numeral 3, as expected. 2-Lisp is also usually
call-by-value (what we might call “procedurally extensional”), in
the sense that procedures by and large normalise their arguments.
Th us the structure (+ 1 (BLOCK (PRINT “HELLO”) 2) will normalise to 3,
printing out “HELLO” in the process.

Many properties of Lisp that must normally be posited in an ad
hoc way fall out directly from this analysis. For example, it normally
requires explicit statement that some atoms, such as T and NIL and

An Overview of 2-Lisp
Begin with objects. Ignoring input/output categories such as characters, strings,
and streams, there are seven 2-Lisp structure types, as illustrated in Table 1.
Th e numerals (notated as usual) and the two Boolean constants (notated
‘$T’ and ‘$F’) are unique (i.e., canonical), atomic, normal-form designators of
numbers and truth-values, respectively. Rails (notated ‘[Al A2 … Ak]’) designate
sequences; they resemble standard Lisp lists, but are distinguished from pairs
in order to avoid category confusion, and are given their own name in order
to avoid confusion with sequences, vectors, and tuples, all of which are normally
taken to be Platonic ideals.

All atoms are used as variables (i.e., as context-dependent names); as a
consequence, no atom is normal-form, and no atom will ever be returned as
the result of processing a structure (although a designator of an atom may
be). Pairs (sometimes also called redexes—notated ‘(A1 . A2)’—designate the
value of the function designated by their CAR (i.e., A1) applied to the arguments
designated by their CDR (A2). By taking notational form ‘(Al A2 … Ak)’ to abbre-
viate ‘(Al . [A2 … Ak])’ instead of Lisp’s traditional ‘(Al . (A2 . … (Ak . NIL)…)))’,
we preserve the standard look of Lisp programs, without sacrifi cing category
alignment. (Note that 2-Lisp has no distinguished atom NIL, and ‘()’ is a no-
tational error—corresponding to no structural fi eld element.) Closures (no-

Indiscrete Affairs · IRL · 28

all numerals, are self-evaluating; in 2-Lisp, the fact that the Boolean
constants are self-normalising follows directly from the fact that
they are normal-form designators. Similarly, closures are a natural
category, and distinguishable from the functions they designate
(there is ambiguity, in Scheme, as to whether the value of + is a func-
tion or a closure). Finally, because of category alignment, if X desig-
nates a sequence of the fi rst three numbers (i.e., it is bound to the
rail [1 2 3]), then (+ . X) will designate the number fi ve and norma-
lise to the numeral 5; no metatheoretic machinery is needed for this
“un-currying” operation (in regular Lisps one must use (APPLY '+ X);
in Scheme, (APPLY + X)).

Numerous properties of 2-Lisp will be ignored in this paper. Th e
dialect is defi ned in Smith (1982) to include side-eff ects, intensional
procedures (procedures which do not normalise their arguments),
and a variety of other sometimes-shunned properties, in part to
show that this semantic reconstruction being argued for here is

tated ‘{CLOSURE: … }’) are normal-form function designators, but they are not
canonical, since it is not in general decidable whether two structures desig-
nate the same function. Finally, handles are unique normal-form designators
of all structures; they are notated with a leading single quote mark (thus 'A
notates the handle of the atom notated A, and '(A . B) notates the handle
of the pair notated (A . B), etc. Because designation and simplifi cation are
orthogonal, quotation is a structural primitive, not a special procedure (al-
though QUOTE is easy to defi ne as a user function in 3-Lisp).

Turn next to the functions (and use ‘⇒’ to mean ‘normalises to’). Th ere are
the usual arithmetic primitives (+, -, *, and /). Identity (signifi ed with ‘=’) is
computable over the full semantic domain except functions; thus (= 3 (+ 1 2))
⇒ $T, but (= + (LAMBDA [X] (+ X X))) will generate a processing error, even though
it designates truth. Th e traditionally rather atheoretical diff erence between EQ
and EQUAL turns out to be an expected diff erence in granularity between the
identity of mathematical sequences and their syntactic designators; thus:†

 (= [1 2 3J [1 2 3]) ⇒ $T
 (= '[1 2 3] '[1 2 3]) ⇒ $F
 (= [1 2 3J '[1 2 3]) ⇒ $F

1ST and REST are the CAR/CDR analogues on both sequences and rails (i.e.,

An Overview of 2-Lisp (cont’d)

Refl ection & Semantics in LISP

RL · 29

compatible with the full gamut of features found in real program-
ming languages. Recursion is defi ned with respect to an analysis
using explicit fi xed-point operators. 2-Lisp is an eminently usable
dialect (it subsumes Scheme but is more powerful, in part because
of the metastructural access to closures), although it is ruthlessly
semantically strict.

 6 Self-Reference in 2·Lisp
Turn now to matters of self-reference.

Traditional Lisps provide names (EVAL and APPLY) for the primitive
processor procedures; the 2-Lisp analogues are NORMALISE and REDUCE.
Ignoring for a moment context arguments such as environments. and
continuations, (NORMALISE '(+ 2 3)) designates the normal-form struc-
ture to which (+ 2 3) normalises, and therefore returns the handle
'5. Similarly:

have overloaded defi nitions); thus (1ST [10 20 30]) ⇒ 10;
and (REST [10 20 30]) ⇒ [20 30]. CAR and CDR are defi ned over
pairs; thus (CAR '(A . B)) ⇒ 'A (because it designates A), and
(CDR '(+ 1 2)) ⇒ '[1 2]. Th e pair constructor is called PCONS
(thus (PCONS 'A 'B) ⇒ '(A . B); the corresponding constructors
for atoms, rails, and closures are ACONS, RCONS, and CCONS, respec-
tively. Th ere are eleven primitive characteristic predicates—
seven for the internal structural types (ATOM, PAIR, RAIL, BOOLEAN,
NUMERAL, CLOSURE, and HANDLE) and four for the external types
(NUMBER, TRUTH-VALUE, SEQUENCE, and FUNCTION). Th us:

Numerals Booleans Handles Closures Rails Atoms Pairs

Yes
Yes

Some

CCONS

{closure …}'structure$T or $F [s1 … s2] (s1 . s2)

RCONS ACONS PCONS

No
No

Numbers

Digits Alphanumerics

Truth values Structures Functions Sequences (of bndg) (value of app)Designation

Type

Normal

Constructor

Canonical

Notation

N/A

N/A

Table 1 — Th e 2-Lisp (and 3-Lisp) categories

Indiscrete Affairs · IRL · 30

 (NORMALISE '(CAR '(A. B))) ⇒ ''A
 (NORMALISE (PCONS '= '[2 3J)) ⇒ '$F
 (REDUCE '1ST '[10 20 30J) ⇒ '10

More generally—and entirely intuitively—the basic idea is that
�(NORMALISE) = �, to be contrasted with �(), which is approxi-
mately �, except that because is a partial function we have
�(º NORMALISE) = �. Given these equations, the behaviour illustrat-
ed in the foregoing examples is forced by general semantical consid-
erations.

In any computational formalism able to model its own syntax and
structures,16 it is possible to construct what are commonly known

16. Virtually any language has the requisite power to do this kind of model-
ling. In a language with metastructural abilities, the metacircular proces-
sor can represent programs for the mcp as themselves—this is always done

 (NUMBER 3) ⇒ $T
 (NUMERAL '3) ⇒ $T
 (NUMBER '3) ⇒ $F
 (FUNCTION +) ⇒ $T
 (FUNCTION '+) ⇒ $F

Procedurally intensional IF and COND are defi ned as usual; BLOCK (as in Scheme)
is like standard Lisp’s PROGN. BODY, PATTERN, and ENVIRONMENT are the three selec-
tor functions on closures. Finally, functions are usually “defi ned” (i.e., conve-
niently designated in a contextually relative way) with structures of the form
(LAMBDA SIMPLE ARGS BODY) (the term SIMPLE will be explained presently); thus
(LAMBDA SIMPLE [X] (+ X X)) normalises to a closure that designates a function
that doubles numbers:

 ((LAMBDA SIMPLE [X] (+ X X)) 4) ⇒ 8

2-Lisp is higher-order, and therefore lexically scoped, like the �-calculus and
Scheme. As mentioned earlier, however, and illustrated with the handles in
the previous paragraph, it is also metastructural, providing an explicit abil-
ity to name internal structures. Two primitive procedures, called UP and DOWN
(usually abbreviated ‘ ’ and ‘ ’, respectively) help to mediate this metastruc-

An Overview of 2-Lisp (cont’d)

Refl ection & Semantics in LISP

RL · 31

as metacircular interpreters, which I will call metacircular proces-
sors (or mcps)—“meta” because they operate on (and therefore
terms within them designate) other formal structures, and “circu-
lar” because they do not constitute a defi nition of the processor in a
prior, independently-understood language—but rather “defi ne” the
processor only in terms of itself. Th is circularity takes two forms.
First, on the procedural side, mcps must be run by the processor in
order to yield any sort of behaviour (strictly speaking, that is, mcps

in Lisp mcps—but we need not defi ne that to be an essential property.
Th e term ‘metacircular processor’ is by no means strictly defi ned; there
are various constraints that one might or might not put on it. My gen-
eral approach has been to view as metacircular any non-causally connected
model of a calculus within itself; thus the 3-Lisp refl ective processor is not
meta-circular, by my lights, because it does have the requisite causal con-
nections, and is therefore an essential (not additional) part of the 3-Lisp
architecture.

tural hierarchy (there is otherwise no way to add or remove quotes—'2 will
normalise to '2 forever, never to 2. Specifi cally, STRUC designates the normal-
form designator of the designation of STRUC; i.e., STRUC designates what STRUC
normalises to (therefore (+ 2 3) ⇒ '5). Th us (note that ‘ ’ is call-by-value but
not declaratively extensional):

 (LAMBDA SIMPLE [X] X) — designates a function
 '(LAMBDA SIMPLE [X] X) — designates a pair or redex
 (LAMBDA SIMPLE [X] X) — designates a closure

Similarly, STRUC designates the designation of the designation of STRUC, pro-
viding that the designation of STRUC is in normal-form (therefore '2 ⇒ 2).

STRUC is always equivalent to STRUC, in terms of both designation and result;
so is STRUC when it is defi ned. Th us if DOUBLE is bound to (the result of
normalising) (LAMBDA [X] (+ X X)), then (BODY DOUBLE) generates an error, since
BODY is extensional and DOUBLE designates a function, but (BODY DOUBLE) will
designate the pair (+ X X).

†In the last case one structure designates a sequence and one a rail.

Indiscrete Affairs · IRL · 32

are programs, not processors). Second, the behaviour they would
thereby engender—which is to say, the behaviour they must also
therefore designate—can be discerned from them only if one knows
beforehand what that behaviour is (i.e., what the processor does).17
Nonetheless, such processors are pedagogically illuminating, and
play a critical role in the development of procedural refl ection.

Th e role of mcps is illustrated in fi gure 11, showing how, if we
ever replace p in fi gure 1 with a process that results from p process-
ing the metacircular processor mcp, it would still correctly engender

the behaviour of any overall
program. Taking processes
to be functions from struc-
tures onto behaviour, there-
fore (whatever behaviour
is—functions from initial
to fi nal states, say), and call-
ing the primitive processor
p, we should be able to prove
that p(mcp) ≈ p, where by
‘≈’ we mean behaviourally
equivalent in some appropri-
ate sense. Th e equivalence,

of course, is in a certain sense global, or at the level of types; by and
large the primitive processor and the processor resulting from the
explicit running of the mcp cannot be arbitrarily mixed. If a vari-
able is bound by the underlying processor p, it will not be able to
be looked up by the metacircular code, for example. Similarly, if the
metacircular processor encounters a control-structure primitive,
such as a THROW or a QUIT, it will not cause the metacircular proces-
sor itself to exit prematurely, or to terminate. Rather, the point is
that if an entire computation is run by the process that results from
the explicit processing of the mcp by p, the results will be the same
(modulo time) as if that entire computation had been carried out
by p directly. mcps, to put this in language to be used in providing

17. Standard fi xed point techniques are of no help in discharging these kinds
of circularity, since what is at issue here is essentially self-mention, whereas
although that terminology is commonly applied to recursive defi nitions, it
would be more accurate to characterise recursion in terms of self-use.

P

S

P

S

MCP
…

Figure 11 — Meta-Circular Processors

Refl ection & Semantics in LISP

RL · 33

genuine refl ection, are not causally connected with the systems they
model.

Th e reason that we cannot mix code for the underlying proces-
sor and code for the mcp and the reason that we ignored context
arguments in the defi nitions above both have to do with the state of
the processor p. In very simple systems (unordered rewrite rule sys-
tems, for example, and hardware architectures that put even the pro-
gram counter into a memory location), the processor has no internal
state, in the sense that it is in an identical confi guration at every
“click point” during the running of a program (i.e., all information
is recorded explicitly in the structural fi eld). But in more complex
circumstances, there is always a certain amount of state to the pro-
cessor that aff ects its behaviour with respect to any particular em-
bedded fragment of code. In writing an mcp one must demonstrate,
more or less explicitly, how the processor state aff ects the process-
ing of object-level structures. By “more or less explicitly” I mean that
the designer of the mcp has options: the state can be represented in
explicit structures that are passed around as arguments within the
processor, or it can be “absorbed” into the state of the processor run-
ning the mcp.18

Th e state of a processor for a recursively embedded functional
language, of which Lisp is an example, is typically represented in an
environment and a continuation, both in mcps and in the standard
metatheoretic accounts. (Note that these are notions that arise in
the theory of Lisp, not in Lisp itself; except in self-referential or self-
modelling dialects, user programs do not traffi c in such entitles.)
Most mcps make the environment explicit. Th e control part of the
state, however, encoded in a continuation, must also be made explic-
it in order to explain non-standard control operations, but in many
mcps (such as that in McCarthy (1965) and in Steele and Sussman’s

18. I say that a property or feature of an object language is absorbed in a
metalanguage or theory just in case the metatheory uses the very same
property to explain or describe the property of the object language. Th us
conjunction is absorbed in standard model theories of fi rst-order logics,
because the semantics of p � q is explained simply by conjoining the ex-
planation of p and q—specifi cally, in such a formula as “ ‘p � q’ is true just
in case ‘p’ is true and ‘q’ is true”.

«Add a note pointing to “Th e Correspondence Continuum”»

Indiscrete Affairs · IRL · 34

mcp for Scheme19) control context is absorbed.
Two versions of the 2-Lisp metacircular processor, one absorbing

and one making explicit the continuation structure, are presented in
sidebars on the following pages. Note that in both cases the underly-
ing agency or anima is not reifi ed; the “activity itself ” remains entire-
ly absorbed by the processor of the mcp. Nothing I have yet said (or
in this paper will say) provides us with either name or mechanism
to designate process itself (as opposed to structures and functional

19. See for example Sussman and Steele (1978b).

Non-Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
 (block (prompt&rep1y (normalise (prompt&read stream) env)
 stream)
 (read-normalise-print env stream))))

(defi ne NORMALISE
 (lambda simple [struc env]
 (cond [(normal struc) struc]
 [(atom struc) (binding struc env)]
 [(rail struc) (normalise-rail struc env)]
 [(pair struc) (reduce (car struc) (cdr struc) env)])))

(defi ne REDUCE
 (lambda simple [proc args env]
 (let [[proc! (normalise proc env)]]
 (selectq (procedure-type proc!)
 [simple (let [[args! (normalise args env)]]
 (if (primitive proc!)
 (reduce-primitive-simple proc! args!)
 (expand-closure proc! args!)))]
 [intensional (if (primitive proc!)
 (reduce-primitive-intensional proc! �args env)
 (expand-closure proc! �args))]
 [macro (normalise �(expand-closure proc! �args) env))]))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env]
 (if (empty rail)
 (rcons)
 (prep (normalise (1st rail) env)
 (normalise-rail (rest rail) env)))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args!]
 (normalise (body proc!)
 (bind (pattern proc!) args! (environment proc!)))))

Refl ection & Semantics in LISP

RL · 35

behaviour over structure), and no method of obtaining causal ac-
cess to an independent locus of active agency has been (or will be)
provided.20

20. Th e reason being that, as computer scientists, we as yet have no real
theory of what processes are.

«Add a comment on this lack—and foreshadow work to come?»

Continuation-Passing 2-LISP Metacircular Processor
(defi ne READ-NORMALISE-PRINT
 (lambda simple [env stream]
 (normalise (prompt&read stream) env
 (lambda simple [result]
 (block (prompt&reply result stream)
 (read-normalise-print env stream))))))

(defi ne NORMALISE
 (lambda simple [struc env cant]
 (cond [(normal struc) (cont struc)]
 [(atom struc) (cont (binding struc env»]
 [(rail struc) (normalise-rail struc env cant)]
 [(pair struc) (reduce (car struc) (cdr struc) env cant)])))

(defi ne REDUCE
 (lambda simple [proc args env cant]
 (normalise proc env
 (lambda simple [proc!]
 (selectq (procedure-type proc!)
 [simple (normalise args env
 (lambda simple [args!]
 (if (primitive proc!)
 (reduce-primitive-simple proc! args! cont)
 (expand-closure proc! args! cont))]
 [intensional (if (primitive proc!)
 (reduce-primitive-int proc! �args env cont)
 (expand-closure proc! �args cant))]
 [macro (expand-closure proc! �args
 (lambda simple [result]
 (normalise �result env cant)))])))))

(defi ne NORMALISE-RAIL
 (lambda simple [rail env cant]
 (if (empty rail)
 (cant (rcons))
 (normalise (1st rail) env
 (lambda simple [fi rst!]
 (normalise-rail (rest rail) env
 (lambda simple [rest!]
 (cant (prep fi rst! rest!)))))))))

(defi ne EXPAND-CLOSURE
 (lambda simple [proc! args! cant]
 (normalise (body proc!)
 (bind (pattern proc!) args! (environment proc!))
 cant)))

Indiscrete Affairs · IRL · 36

 7 Procedural Refl ection and 3·Lisp
Given the metacircular processors defi ned above, 3-Lisp can be non-
eff ectively defi ned in a series of steps.

First, imagine a dialect of 2-Lisp, called 2-Lisp1, where user pro-
grams are not run directly by the primitive processor, but by that
processor running a copy of an mcp. Next, imagine 2-Lisp2, in which
the mcp in turn is not run by the primitive processor, but instead by
the primitive processor running another copy of the mcp. And so
on and so forth. 3-Lisp is essentially 2-Lisp∞, except that the mcp is
changed in a critical way in order to provide the proper connection
between levels. 3-Lisp, in other words, is what I will call a refl ective

tower, defi ned as equivalent to an infi nite
number of copies of an mcp-like program,
run at the “top” by an (infi nitely fl eet) pro-
cessor. Th e claim that 3-Lisp is well-found-
ed is the claim that the limit exists—that
is, that both sides of the following equation
are sound:

Lim3-Lisp ≈ n ∞ 2-Lisp∞

I will explain the revised mcp presently, but
fi rst some general properties of this tower
architecture. A rough idea of the levels of
processing is given in fi gure 12: at each level
the processor code is processed by an ac-
tive process that interacts with it (locally

and serially, as usual), but each processor is in turn composed of a
structural fi eld fragment in turn processed by a refl ective processor
on top of it. What I will show is that the implied infi nite regress is
not problematic, and that the architecture can be effi ciently realised,
since only a fi nite amount of information is encoded in all but a
fi nite number of the bottom levels.

Th ere are two ways to think about refl ection. On the one hand, on
what I will call the “shifting view,” one can think of there being a
primitive and noticeable refl ective act, which causes the processor,
in the sense of the basic locus of animating activity, to shift levels
rather markedly either up or down, in what logicians and philoso-

Level 1 code

Level 2 code

Level 3

L 4

Figure 12 — Th e 3-Lisp Refl ective Tower

Refl ection & Semantics in LISP

RL · 37

phers might think of as semantic ascent and semantic descent (this is
the explanation that best coheres with some of our pre-theoretic
intuitions about refl ective thinking, in the sense of contemplation).
On the other hand, in what we might instead call the “tower view,”
which accords better with the explanation given in the previous
paragraph, the model is instead of an infi nite number of levels of
refl ective processors, each implementing the one below, without any
shifting going on.21 On this tower view, it is not coherent either to ask
about what level the tower is running at, or to ask how many refl ective
levels are running: on the tower view they are all running at once. Th e
same situation obtains when you use an editor implemented in apl.
It is not as if the editor and the apl interpreter are both running
together, either side-by-side or independently; rather, the one (the
apl interpreter), being “interior” to the other, supplies the anima or
agency of the outer one (the editor). To put this another way, when
you implement one process in another process, you might want to
say that you have two diff erent processes, but you do not thereby
have concurrency; the relation is is more like one of part and whole.
It is just this sense in which the higher levels in our refl ective hier-
archy are always running: each of them is in some sense within the
processor at the level below, so that it can thereby engender it.

I will not take a principled view on which account—a single lo-
cus of agency stepping between levels, or an infi nite hierarchy of
simultaneous processors—is correct, since they turn out to be be-
haviourally equivalent. Indeed, one way to characterise the model of
refl ection being proposed is as the following suggestion:

 The semantically cleanest and most [T]
 elegant way to understand a shifting refl ective
 process is to model it as a tower.

(One pragmatic rule of thumb: the simultaneous infi nite tower of
levels is often the better way to understand processes, whereas the
shifting-level viewpoint is sometimes the better way to understand
programs.)

21. Curiously, there are also intuitions about contemplative thinking, where
one is both detached and yet directly present at the same time—which fi t
more closely with this view.

Indiscrete Affairs · IRL · 38

If we view 3-Lisp on the tower model, as an infi nite refl ective tower
based on 2-Lisp, the code at each level can be understood as like the
continuation-passing 2-Lisp mcp presented earlier,22 but extended
in an essential way: to provide a mechanism whereby the user’s pro-
gram can gain access to fully-articulated descriptions of that pro-
gram’s operations and structures. Th us extended, and appropriately
located in a refl ective tower, I will call this code the 3-Lisp refl ective
processor procedure (RPP). Programs gain refl ective access to the
articulated descriptions of the program’s operations and structures
by using what I will call refl ective procedures—procedures that,
when invoked, are: (i) run not at the level at which the invocation
occurred, but one level higher, at the level of the refl ective processor
running the program; and (ii) given as arguments those structures
being passed around in the refl ective processor. I.e., refl ective pro-

22. “Continuation-Passing 2-Lisp Metacircular Processor” sidebar, page ■■.

Programming in 3-Lisp
For illustration, we will look at a handful of simple 3-Lisp programs. Th e fi rst
merely calls the continuation with the numeral 3; thus a call to it (with no
arguments) it is semantically identical to the simple numeral:
 (defi ne THREE
 (lambda refl ect [[] env cant]
 (cant '3)))

Th us (THREE) ⇒ 3; (+ 11 (THREE)) ⇒ 14. Th e next example is an intensional
predicate, true if and only if its argument (which must be a variable) is bound
in the current context:
 (defi ne BOUND
 (lambda refl ect [[var] env cont]
 (if (bound-in-env var env)
 (cont ‘$T)
 (cont ‘$F))))

or equivalently
 (defi ne BOUND
 (lambda refl ect [[var] env cant]
 (cant (bound-in-env var env))))

Th us (LET [[X 3]] (BOUND X)) ⇒ $T, whereas (BOUND X) ⇒ $F in the global con-
text. Th e following quits the computation, by discarding the continuation
and simply “returning”:

Refl ection & Semantics in LISP

RL · 39

cedures are essentially analogues of subroutines to be run “in the
implementation,” except that:

Th ey are written in the same dialect as that being imple-1.
mented;

Th ey can use all the power of the implemented language in 2.
carrying out their function—i.e., refl ective procedures can
themselves make use of further refl ective procedures, with-
out limit;23 and

Because they are within, not external to or “underneath” the 3.
architecture being implemented, they avoid all of the inel-
egance, implementation-dependence, and other deleterious

23. Th e tower is not a tower of diff erent languages. Th ere is a single dialect
(3-Lisp) all the way up. What the tower is a tower of is processors—nec-
essary because there is diff erent processor state at each refl ective level.

 (defi ne QUIT
 (lambda refl ect [[] env cant]
 'QUIT!))

Th ere are a variety of ways to implement a THROW/CATCH pair; the following
defi nes the version used in Scheme:
 (defi ne SCHEME-CATCH
 (lambda refl ect [[tag body] catch-env catch-cant]
 (normalise
 body
 (bind tag
 (lambda refl ect [[answer] throw-env throw-cont]
 (normalise answer throw-env catch-cont))
 catch-env)
 catch-cant)))

For example:
 (let [[x 1]]
 (+ 2 (scheme-catch punt
 (* 3 (/ 4 (if (= x l)
 (punt 15)
 (- X 1)))))))

would designate seventeen and return the numeral 17.
Th e refl ection mechanism is so powerful that many traditional primitives

can be defi ned; LAMBDA, IF, and QUOTE are all non-primitive (user) defi nitions in
3-Lisp, defi ned as follows:

Indiscrete Affairs · IRL · 40

aspects of traditional code that has to “reach into the imple-
mentation” to do its work.

Refl ective procedures are “defi ned” (in the sense described earlier)
using the form

(LAMBDA REFLECT ARGS BODY)

where ARGS—typically the rail [ARGS ENV CONT]—is a pattern that
should match a 3-element designator of, respectively, the argu-
ment structure at the point of call, the environment, and the con-
tinuation. Some simple examples are given in the “Programming
in 3-Lisp” sidebar, above, including a fully functional defi nition of
Scheme’s CATCH. Th ough simple, these defi nitions would be impos-
sible in a traditional language, since they make crucial access to the
full processor state at point of call. Note also that although THROW
and CATCH deal explicitly with continuations, the code that uses them
need know nothing about such subtleties. More complex routines,

 (defi ne LAMBDA
 (lambda refl ect [[kind pattern bodyJ env contJ
 (cont (ccons kind env pattern body))))

 (defi ne IF
 (lambda refl ect [[premise then elseJ env contJ
 (normalise premise env
 (lambda simple [premise!]
 (normalise (ef premise! then else) env cant)))))

 (defi ne QUOTE
 (lambda refl ect [[argJ env contJ (cant arg)))

Some comments. First, the defi nition of LAMBDA just given is, of course, cir-
cular; a noncircular but eff ective version is given in Smith and des Rivières
(1984); the one given above, if executed in 3-Lisp, would leave the defi nition
unchanged, except that it is an innocent lie: in real 3-Lisp KIND is a procedure
that is called with the arguments and environment, allowing the defi nition of
(LAMBDA MACRO …), etc. CCONS is a closure constructor that uses SIMPLE and REFLECT
to tag the closures for recognition by the refl ective processor described in sec-
tion 6. EF is an extensional conditional that normalises all of its arguments;
the defi nition of IF defi nes the standard intensional version that normalises

Programming in 3-Lisp (cont’d)

Refl ection & Semantics in LISP

RL · 41

such as utilities to abort or redefi ne calls already in process, are al-
most as simple. In addition, the refl ection mechanism is so powerful
that many traditional primitives can be defi ned, rather than having
to be provided primitively: LAMBDA, IF, and QUOTE are all non-primitive
(i.e., user) defi nitions in 3-Lisp, again illustrated in the sidebar. A
simplistic break package is also presented, to illustrate the use of the
refl ective machinery for debugging purposes. It is noteworthy that
no refl ective procedures need be primitive; even LAMBDA can be built
up from scratch.

Th e power and simplicity of these examples stems from the fact
that the 3-Lisp refl ective processor is causally connected in the right
way, so as to allow the refl ective procedures to run in the system in
which they defi ned, rather than being models of another system.
And, since refl ective procedures are fully integrated into the system
design (their names are not treated as special keywords), they can
be passed around in the normal higher-order way. Finally, there is a

only one of the second two, depending on the result of normalising the fi rst.
And the defi nition of QUOTE will yield (QUOTE A) ⇒ 'A.

Finally, we have a trivial break package, with ENV and CONT bound in the
break environment for the user to see, and RETURN bound to a procedure that
will normalise its argument and pass that out as the result of the call to
BREAK:
(defi ne BREAK
 (lambda refl ect [[argJ env contJ
 (block (print arg primary-stream)
 (read-normalise-print “»”
 (bind* ['env envJ
 ['cant contJ
 ['return (lambda refl ect [[a2J e2 c2]
 (normalise a2 e2 cont))]
 env)
 primary-stream))))

If viewed as models of control constructs in a language being implemented,
these defi nitions will look innocuous; what is important to remember is that
they work in the very language in which they are defi ned.

Indiscrete Affairs · IRL · 42

sense in which 3-Lisp is simpler than 2-Lisp, as well as being more
powerful; there are fewer primitives, and 3-Lisp provides much
more compact ways of dealing with a variety of intensional issues
(like macros).

 8 The 3- Lisp Refl ective Processor
3-Lisp is best understood through a close inspection of the 3-Lisp
refl ective processor—the promised modifi cation of the continua-
tion-passing 2-Lisp metacircular processor mentioned above.

Th e code for the rpp is presented in a fi nal sidebar, above. NORMALISE
(line 7) takes a structure, environment, and continuation, and: (i)

The 3-Lisp Refl ective Processor Program (RPP)

1 (defi ne READ-NORMALISE-PRINT
2 .. (lambda simple [level env stream]
3 (normalise (prompt&read level stream) env
4 (lambda simp1e [result] ; C-REPLY
5 (block (prompt&reply result level stream)
6 (read-normalise-print level env stream))))))

7 (defi ne NORMALISE
8 .. (lambda simple [struc env cont]
9 (cond [(normal struc) (cont struc)]
10 [(atom struc) (cont (binding struc env))]
11 [(rail struc) (normalise-rail struc env cont)]
12 [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

13 (defi ne REDUCE
14 .. (lambda simple [proc args env cont]
15 (normalise proc env
16 (lambda simple [proc!] ; C-PROC!
17 (if (refl ective proc!)
18 (�(de-refl ect proc!) args env cont)
19 (normalise args env
20 (lambda simple [args!] ; C-ARGS!
21 (if (primitive proc!)
22 (cont �(�proc! . �args!))
23 (normalise (body proc!)
24 (bind (pattern proc!) args! (environment proc!))
25 cont))))))))

26 (defi ne NORMALISE-RAIL
27 .. (lambda simple [rail env cont]
28 (if (empty rail)
29 (cont (rcons))
30 (normalise (1st rail) env
31 (lambda simple [fi rst!] ; C-FIRST!
32 (normalise-rail (rest rail) env
33 (lambda simple [rest!] ; C-REST!

Refl ection & Semantics in LISP

RL · 43

returns the structure unchanged (i.e., sends it to the continuation)
if it is in normal form; (ii) looks up the binding if it is an atom; (iii)
normalises the structure’s elements if it is a rail;24 and (iv) otherwise
reduces the CAR (procedure) with the CDR (arguments). REDUCE (line
13) fi rst normalises the procedure, with a continuation (C-PROC!) that
checks (line 17) to see whether it is refl ective.25 If it is not refl ective,
C-PROC! normalises the arguments, with a continuation that either
expands the closure (lines 23–25) if the procedure is non-primitive,
or else executes it directly (line 22) it if it is primitive.

As an example, consider (REDUCE '+ '[X 3] ENV ID), assuming that
X is bound to the numeral 2 and + to the primitive addition closure
in ENV. At line 22, PROC! will designate the primitive addition closure,
and ARGS! will designate the normal-form rail [2 3]. Since addition
is primitive, we must simply do the addition. (PROC! . ARGS!) would
not work, because PROC! and ARGS! are at the wrong level; they des-
ignate structures, not functions or arguments. For a brief instant,
therefore, we dereference them (with), do the addition, and then
regain our meta-structural viewpoint with .26 If the procedure is

24. NORMALISE-RAIL is 3-Lisp’s tail-recursive continuation-passing analogue of
Lisp 1.5’s EVLIS.

25. I adopt a convention of using exclamation point suffi xes on atom names
used as variables to designate normal form structures.

26. One way to understand this is to realize that the refl ective processor sim-
ply asks its processor to do any primitives that it encounters—i.e., it passes
responsibility for the execution of primitives up to the processor running
it. In other words, each time one level uses a primitive, its processor runs
around setting everything up, fi nally reaching the point at which it must
simply do the primitive action, whereupon it asks its own processor for
help. But, of course, that processor—i.e., the processor running the pro-
cessor in question—will also come racing towards the edge of the same
cliff , and will similarly duck responsibility, handing the primitive up yet
another level.

Th e net result, from the “tower” perspective, is that every primitive ever
executed is handed all the way to the (infi nitely remote) top of the tower.
Th ere is then a magic moment, when the thing actually happens—and then
the answer fi lters all the way back down to the level that started the whole
procedure. It is as if the deus ex machina, living at the top of the tower,
sends a lightning bolt down to some level or other, once every intervening
level gets appropriately lined up (rather like the sun, at Stonehenge and the
Pyramids, reaching down through a long tunnel at just one particular mo-
ment during the year).

Indiscrete Affairs · IRL · 44

refl ective, however (line 18), it is called directly, not processed, and
given the obvious three arguments (ARGS, ENV, and CONT) that are being
passed around. (DE-REFLECT PROC!) is merely a mechanism to “purify”
the refl ective procedure so that it does not refl ect again, and to de-
reference it to be at the right level (we want to use, not mention, the
procedure designated by PROC!). Note that line 18 is the only place
that refl ective procedures can ever be called; this is why they must
always be prepared to accept exactly those three arguments.

Th is leads to an important point:

 Refl ective processor program
 line line 18 is the essence of 3-Lisp.

Line 18 alone engenders the full refl ective tower, for it says that some
parts of the object language—the code processed by this program—
are called directly in this program. It is as if an object level fragment
were included directly in the meta language, which raises the ques-
tion of who is processing the meta language. Th is is where the tower
enters the picture: the claim underlying 3-Lisp is that an exactly
equivalent refl ective processor is processing this code, too—and that
this fact can be true without vicious threat of infi nite ascent.

Th e result is to allow a refl ective procedure “to be executed in the
middle of the processor context.” It is handed, as arguments, envi-
ronment and continuation structures that designate the process-
ing of the code below it, but it is run in a diff erent context, with
its own (implicit) environment and continuation, which are in turn
represented in structures passed around by the processor one level
above it. In this way a refl ective procedure is given causal access to
the state of the process that was in progress (answering one of the
three initial requirements for refl ection); as a result, it can cause any
eff ect it wants since it has complete access to all future processing of
that code. Furthermore, it has a safe place to stand, where it will not

Except, of course, that nothing ever happens, ultimately, except primi-
tives. In other words the enabling agency, which must fl ow down from the
top of the tower, consists of an infi nitely dense series of these lightning
bolts, with something like 10 of the ones that reach each level being al-
lowed through that to the level below (and then 10 of those reaching to
the level below it, etc.).

All infi nitely fast.
«Th is should be edited to refer to the Implementation paper.»

Refl ection & Semantics in LISP

RL · 45

confl ict with the code being nm below it (thereby meeting the third
criterion).

Th ese various protocols illustrate a general point. As mentioned
at the outset, part of designing an adequate refl ective architecture
involves a trade-off between being so connected that one steps all
over oneself (as in traditional implementations of debugging utili-
ties), and so disconnected (as with metacircular processors) that one
has no eff ective access to what is going on. Th e suggestion made
here is that the 3-Lisp refl ective tower provides just the right balance
between these two extremes, solving the problem of vantage point as
well as of (both directions of) causal connection.

Th e 3-Lisp refl ective processor unifi es three traditionally indepen-
dent capabilities in Lisp: (i) the explicit availability of EVAL and APPLY,
(ii) the ability to support metacircular processors, and (iii) explicit
operations provided for debugging purposes (such as MacLisp’s
RETFUN and Interlisp’s FRETURN). It is striking that the latter facilities
are required in traditional dialects, in spite of the presence of the
former, especially since they depend crucially on implementation
details, violating portability and other natural aesthetics. In 3-Lisp,
in contrast, all information about the state of the processor is fully
available within the language itself—suggesting that its refl ective ar-
chitecture constitutes something of an appropriate theoretical unifi -
cation of the kinds of extension that have heretofore had to be made
in ad-hoc and non-transportable ways.

 9 Threats of Infi nity and Finite Implementations
Th e argument as to why 3-Lisp is fi nite is complex in detail, but
simple in outline and substance. In brief: the proof relies on showing
that the refl ective processor is tail-recursive in two senses:

It runs programs tail-recursively, in that it does not build up 1.
records of state for programs across procedure calls (only on
argument passing); and

It itself is fully tail-recursive, in the sense that all recursive 2.
calls within it (except for unimportant subroutines) occur in
tail-recursive position.

27. «Refs?»

Indiscrete Affairs · IRL · 46

As a result, the refl ective processor can be executed by a simple fi nite
state machine. In particular—and this is the crucial point—it can
run itself without using any state at all. Once the limiting behaviour
of an infi nite tower of copies of this processor has been determined,
therefore,28 that entire chain of processors can be simulated by an-
other fi nite state machine, of complexity only moderately greater
than that of the refl ective processor itself.29 A full copy of such an
implementing processor30 and a much more substantive discussion
of tractability is provided in Smith & des Rivières (1984).

 10 Conclusions and Morals
Th e use of Lisp as a language in which to explore programming
semantics and refl ection is not essential; the ideas should hold in
any similar circumstance. I have chosen Lisp because it is familiar,
because it has rudimentary self-referential capabilities, and because
there is a standard procedural self-theory (continuation-passing
metacircular “interpreters”). Work has begun, however, on design-
ing refl ective dialects of a side eff ect-free Lisp and of Prolog, and
on studying a refl ective version of the �-calculus (the last being an
obvious candidate to be used as a basis for a mathematical study of
refl ection).k

Th e techniques used here to defi ne 3-Lisp can be generalised
rather directly to these other languages. As suggested at the outset,
in order to construct a refl ective dialect one needs:

To formulate a theory of the language analogous to the met-1.
acircular processor descriptions we have examined;

To embed this theory within the language; and2.

To connect the theory with the underlying language in an 3.
appropriate causally connected way—i.e., so as to allow for

28. Th is has not yet been explained in this paper; see «refer to the implemen-
tation paper.»

29. It is an interesting open research question whether that “implementing”
processor can be algorithmically derived from the refl ective processor
code.

«Note that this has yet to be done … »
30. Consisting (including all utilities) of only about 200 lines of 2-Lisp code.

k) «May put in a sidebar on the result? I have it somewhere...»

Refl ection & Semantics in LISP

RL · 47

both “upwards” and “downwards” connection—by allow-
ing refl ective procedures invocable in the object language
the ability to run (non-refl ectively) in the processor (as was
done in line 18 of the 3-Lisp refl ective processor program).

It remains to implement the resulting infi nite tower; a discussion
of general techniques, which again would readily generalize to lan-
guages other than 3-Lisp, is presented in des Rivières and Smith
(1984).

It is partly a consequence of using Lisp that I have used non-
data-abstracted representations of functions and environments; this
facilitates side eff ects to processor structures without introducing
unfamiliar machinery. It is clear that environments could be readily
abstracted, although it would remain open to decide what modi-
fyonlylling operations would be supported (changing bindings is
one, but one might wish to excise bindings completely, splice in new
ones in, etc.). In standard l-calculus-based metatheory there are no
side eff ects (and no notion of processing); environment designators
must therefore be passed around (“threaded”) in order to model en-
vironment side eff ects. It should be simple to defi ne a side eff ect-free
version of 3-Lisp with an environment-threading refl ective proces-
sor, and then to defi ne SETQ and other such routines as refl ective
procedures. Similarly, I have assumed in 3-Lisp a single structural
fi eld commonly visible from all code; one could defi ne an alternative
dialect in which the structural fi eld, too, was threaded through the
processor as an explicit argument, as in standard metatheory.

Th e representation of procedures as closures is troublesome.31 I
would be the fi rst to admit that 3-Lisp provides too fi ne-grained
(i.e., too metastructural) access to function designators—including
continuations and the like. Given an appropriately abstract notion
of procedure, it would be natural to defi ne a refl ective dialect that
used abstract structures to encode procedures, and then to defi ne
refl ective access in such terms. While I did not follow this direction
here, in order to avoid taking on another very diffi cult problem, an-
other intent of future work is to move in this direction.

31. Closures are failures, in a sense, in that they encode far more information
than should be required in order to identify a function in intension; the
problem being that we do not yet know what a function in intension might
be.

Indiscrete Affairs · IRL · 48

Th ese considerations all illustrate a general point: in designing a
refl ective processor, one can choose to bring into view more or less
of the state of the underlying process. Fundamentally, it reduces to a
design choice of what one wants to reify or make explicit, and what
one wants to absorb. As currently defi ned, 3-Lisp reifi es (i) the en-
vironment and (ii) the continuation, thereby making explicit those
two implicit dimensions of processing one level below. It absorbs
(iii) the structural fi eld and (iv) the global environment; in addi-
tion, as mentioned earlier, it completely absorbs (v) the animating
agency of the whole computation. If one were to defi ne a refl ective
processor based on a metacircular processor that also absorbed the
representation of control (in the style of the non-continuation-pass-
ing 2-Lisp mcp,32 which embedded the control structure of the code
being processed with the control structure of the processor), then
refl ective procedures would not have access to, and therefore could
not aff ect, a base program’s control structure. In any real application,
it would need to be determined just what parts of the underlying
dialect required reifi cation.

More interestingly, one might be able to design a refl ective lan-
guage in which individual refl ective procedures could specify, with
respect to a very general meta-theory, which aspects they wanted
explicit access to (simply environment in one case, animating agency
in another, control structure but not agency in a third, etc.). In such
a design, operations that needed only environmental access, such as
BOUND?, would not need to traffi c in continuations. While a modifi ca-
tion of 3-Lisp that provides such “contextually optional” access to
environment, continuation, and structural fi eld, a full exploration of
this possibility remains for future work.

One fi nal point. Th roughout this paper I have talked about se-
mantics, but I have so far presented no mathematical semantical
accounts of any of the dialect presented. To do so for 2-Lisp is rela-
tively straightforward (see des Rivières and Smith (1984)l), but it
remains to develop appropriate semantical equations to describe
3-Lisp. While might initially be tempting to construct such a model

32. Sidebar on p. ■■.
l) «Check; not sure this was ever done? Was it in the manual?»

Refl ection & Semantics in LISP

RL · 49

based on the implementation strategy described in des Rivières and
Smith (1984), I believe that doing so would be a failure. Instead,
what is needed is a two-step process:

To construct a mathematical account of the “infi nite tower” 1.
view of 3-Lisp—i.e., to take the limit as n ∞ of 2-Lispn, as
suggested in §■■; and then

To prove, in terms of that model, that the fi nite implemen-2.
tation strategies presented in des Rivières and Smith (1984)
are correct.

Th is awaits further work. Additional future work would include:
(i) exploring what it would be to deal explicitly, in the semantical
account, with anima or agency (rather than simply absorbing it),
which would introduce parallelism into the refl ective act; and (ii)
formulating a more general account of the requisite causal connec-
tion, that are so crucial to the success of any refl ective architecture.
Th ese various tasks will require more radical reformulations of se-
mantics than have been considered here.

 Acknowledgements
I have benefi ted greatly from the collaboration of Jim des Rivières
on these questions, particularly with regard to issues of eff ective
implementation. Th e research was conducted in the Cognitive and
Instructional Sciences Group at the Xerox Palo Alto Research Center
(parc), as part of the Situated Language Program of Stanford’s
Center for the Study of Language and Information (clsi).

 References
Batali, John, “Computational Introspection,” Artifi cial Intelligence Laboratory

Memo aim-tr-701, Massachusetts Institute of Technology, Cambridge,
ma, 1983.

des Rivières, Jim and Smith, Brian Cantwell, “Th e Implementation of
Procedurally Refl ective Languages,” 1984 Conference on lisp and
Functional Programming, Austin, Texas, August 1984. Also available as
Xerox Palo Alto Research Center (parc) Report isl–4, Palo Alto, CA
(1984) and Stanford Center for the Study of Language and Information
Report csli-84-9 (1984). Reprinted here as Chapter ■■.

Doyle, Jon, “A Model for Deliberation, Action, and Introspection,” Artifi cial
Intelligence Laboratory Memo aim-tr-581, Massachusetts Institute of
Technology, Cambridge, ma, 1980.

Indiscrete Affairs · IRL · 50

Fodor, Jerry. “Methodological Solipsism Considered as a Research Strategy in
Cognitive Psychology,” Th e Behavioural and Brain Sciences, 3:1 (1980) pp.
63–73; reprinted in Fodor, Jerry, Representations, Cambridge, ma: Bradford,
1981.

Genesereth, Michael and Lenat, Douglas B., “Self-Description and
Modifi cation in a Knowledge Representation Language,” Heuristic
Programming Project Report hpp-80-10, Stanford University Department
of Computer Science, 1980.

McCarthy, John et al., lisp 1.5 Programmer’s Manual. Cambridge, ma: mit
Press, 1965.

Smith, Brian Cantwell, Refl ection and Semantics in a Procedural Language,
Laboratory for Computer Science Report mit-tr-272, 1982. Abstracts,
Prologue, and Chapter 1 reprinted here as Chapter ■■.

Smith, Brian Cantwell and des Rivières, Jim, “Interim 3-Lisp Reference
Manual,” Report isl-1, Xerox Palo Alto Research Center (parc), Palo Alto,
ca (1984…■■).

Steele, Guy, “lambda: Th e Ultimate Declarative,” Artifi cial Intelligence
Laboratory Memo aim-379, Massachusetts Institute of Technology,
Cambridge, ma, 1976.

Steele, Guy and Sussman, Gerald, “Th e Revised Report on scheme, a Dialect
of lisp,” Artifi cial Intelligence Laboratory Memo AIM-452, Massachusetts
Institute of Technology, Cambridge, ma, 1978a.

Steele, Guy and Sussman, Gerald, “Th e Art of the Interpreter, or, Th e
Modularity Complex (parts Zero, One, and Two),” Artifi cial Intelligence
Laboratory Memo aim-453, Massachusetts Institute of Technology,
Cambridge, ma, 1978b.

Weyhrauch, Richard W., “Prolegomena to a Th eory of Mechanized Formal
Reasoning,” Artifi cial Intelligence 13:1,2 (1980) pp. 133–170.

Refl ection & Semantics in LISP

RL · 51

Given the impossibility of bringing Mantiq to fruition, it was fortunate that

3-Lisp and procedural refl ection were able to serve as the focus of a completable

doctoral dissertation—though the advertising was disingenuous, since although

Mantiq was genuinely supposed to be refl ective, 3-Lisp ultimately amounted to

being only what I would later call “introspective.”�6
 (Mantiq was also intended

to be descriptively as well as procedurally refl ective; though I did recognize that

3-Lisp was limited to the procedural case.)

Some of the history of Mantiq and 3-Lisp is described in the Preface to the dis-

sertation that resulted, published as a technical report under the name “Refl ection

and Semantics in Procedural Languages” (RSPL), q.v.�
7
 Of special relevance here

is the fact that the semantic orientation adopted in the 3-Lisp design, according

to which programs are taken as effective ingredients within computational pro-

cesses, rather than as external specifi cations of (or prescriptions for) them, was

more familiar within knowledge representation (KR) and AI circles than it was

in the programming language community per se. This perspective, which I dub

an “ingrediential” view of programs, derives in part from the fact that I came

to the Mantiq project out of an interest in knowledge representation, and that

the KR community conceives its task as one of developing computer analogues

of the mental structures that underlie active, real-world knowledge and thought

processes—i.e., as they occur during the course of a person’s (or system’s) ongo-

ing life—rather than as statically or once-and-for-all “specifying a mind,” in the

way that one might take to be the task of DNA. This ingrediential stance to re-

fl ection is quite explicit in RSPL, for example in the discussion of what I called the

“Refl ection Hypothesis”:�
8

In as much as a computational process can be constructed to reason about

an external world in virtue of comprising an ingredient process (interpreter)

formally manipulating representations of that world, so too a computational

process can be made to reason about itself in virtue of comprising an ingre-

dient process (interpreter) formally manipulating representations of its own

operations and structures.

At the time this 3-Lisp paper was published, I did not appreciate the theoretical

signifi cance, especially as regards semantics, of viewing programs from different

perspectives. Recognition began to dawn soon thereafter, when I encountered

the incomprehensibility with which my programming language colleagues greet-

ed my approach to 2-Lisp (and thus 3-Lisp) semantics. A particularly telling event

2010 Perspective (cont’d)

Indiscrete Affairs · IRL · 52

occurred in 1984, when—proud of what I took to be its semantical cleanliness—I

invited Joseph Goguen and Jose Meseguer, programming language theorists at

SRI, to sketch out a “formal denotational semantics” for 2-Lisp. My plan was to

use what they developed as a basis for initiating a mathematical analysis of 3-Lisp

and refl ection. When they generously came back with a proposal, however, I

was—to be frank—astonished. What they took to be a mathematically clean se-

mantical analysis obliterated what I took to be essential to 2-Lisp’s semantical

clarity—confl ating distinctions I had taken such pains to maintain, such as among

handles, numerals, and numbers, and between sequences and rails. Entities I took

to be concrete were treated as abstract; the grounds on which I had rested my

critique of the Lisp conception of evaluation had vanished; and in general their

“theoretically clean” version of 2-Lisp had undergone a transformation that not

only rendered it wholly unfamiliar to me, but that “disappeared” what was—at

least in my eyes—its major contribution. Needless to say, , the proposed collabo-

ration stalled, in spite of great respect on both sides (I mean nothing indicting by

telling this tale; we were simply approach what we took to be a common subject

matter from radically different perspectives). I never did develop a mathematical

account of refl ection—nor, to my knowledge, has anyone else.

Fortunately, in spite of this setback, the work on 3-Lisp and procedural refl ec-

tion itself was kindly received in the larger community. After this paper appeared

at the Principles of Programming Languages conference (POPL) in 1984, interest

in refl ection burgeoned around the world, and a variety of refl ection confer-

ences were held over the subsequent 10 years.�
9

But the issues that had surfaced in the interaction with Goguen and Meseguer

were a harbinger of more profound intellectual challenges than at the time I

knew how to resolve. I had staked my dissertation on the fundamental thesis on

which 3-Lisp is based (thesis [R], §1, p. (■■): that refl ection is relatively straight-

forward, if implemented on a semantically sound base. While, in an overall sense,

the topic of procedural refl ection was widely picked up, that orienting thesis,

with no exceptions of which I am aware, was resoundingly ignored.�
10

 At fi rst

I was puzzled by people’s blindness to or even dismissal of it,�
11

 but I gradually

came to appreciate that the incomprehensibility of this semantical thesis rested

on the considerable conceptual difference of viewing programs as ingredients in

computational processes, rather than as specifi cations or prescriptions of them.

As one would expect, the clearer I became on the underlying issues, the more

I was able—especially in conversation—to explain the perspective from which

Refl ection & Semantics in LISP

RL · 53

3-Lisp was designed. As I quickly learned, however, success in describing its ar-

chitectures by and large required that I not use the ingrediential vocabulary I

am employing here—i.e., depended on my not saying that the two dialects were

based on a view of programs as causally effective process-internal ingredients.

Rather, I had to describe them from a viewpoint that at the time felt alien to me:

taking programs to be external, if nevertheless effective, process specifi cations or

descriptions (or even prescriptions). A conversation with Gordon Plotkin (again in

the mid 1980s) at Stanford’s Center for the Study of Language and Information

(CSLI) is illustrative. After failing to communicate anything about what mattered

to me about 2-Lisp using my own terminology, I attempted to adopt his—i.e.,

tried to “inhabit” the specifi cational view—and said that what I was interested in

was “the semantics of the semantics of programs.” The ploy must have worked,

as I recall him nodding and smiling. But the differences remained profound, and

nothing further came of the conversation. Although I made some subsequent

attempts to explain the differences in viewpoints (e.g., in (■■), it seems safe to

say that the 2-Lisp and 3-Lisp approach to semantical clarity—and the idea of

theorizing distinct procedural and declarative aspects of program meaning—was

met with virtual silence when fi rst presented, and then quickly faded into the

background.

Over the intervening 25 years I have developed a much deeper understanding
of these communicative failures, as well as an appreciation of the intellectual
history that gave rise to them. The issues lie deep in the foundations of com-
puting, and derive in part from the ways in which computer science has taken
over technical terminology from philosophical and mathematical logic, but has
used it for different purposes. Of numerous issues, one looms large in the pres-
ent context: for reasons traceable as far back as Turing’s original 1937 paper,
computer scientists in general, and programming language theorists in par-
ticular, use what a classical logician would consider semantical vocabulary and
model-theoretic techniques to analyse what that same logician would think of
as fundamentally syntactic and/or proof-theoretic concerns. Disentangling this
history helps to clarify all manner of communicative failures, theoretical con-
fusions, and contextually incomprehensible behaviours—including such seem-
ingly diverse topics as misunderstandings (on all sides) of Searle’s Chinese Room
thought experiment, the widespread use of constructive mathematics and intu-
itionistic logic in theoretical computer science (such as Martin-Löf’s intuitionistic
type theory) the structure of refl ection, the meteoric rise in popularity (perhaps

Indiscrete Affairs · IRL · 54

even the provenance) of Girard’s linear logic,�
12

 and the substantial distraction
we have all suffered, in my view, from focusing exclusively on the semantics of

programming languages, rather than on the semantics of individual programs.

Elsewhere I have made some stabs at explaining these issues,�
13

 but only brief-

ly, and in passing. One of the goals of The Age of Signifi cance (AOS) project,�
14

being launched as this is being written, is to spell out this history in ways that fa-

cilitate understanding across the boundaries of computer science—both “exter-

nally,” as it were, by allowing what matters about computing to be understood

from an external intellectual perspective, and “internally,” by enabling the genu-

ine semantical insights of the logical tradition to be appreciated within computer

science (something that in my opinion has largely not yet occurred).

My exploration of these foundational issues has primarily taken place in my
investigations into the philosophy of computing, and will be reported on as
such. More technically, after the publication of this paper my attention did not
stay focused on programming languages, but turned back towards the issues
that had originally motivated Mantiq: how to generalize the lessons learned
here in the context of people and/or systems able to reason about the concrete,
external world.

I was sobered not only by the daunting challenges of doing justice to real-

world metaphysics and ontology, but also by an inadvertent lesson gained from

the 3-Lisp exercise: the untenable pedantry of excessive semantical strictness. Not

only was it manifest that dealing with real-world ontology was a profoundly

more serious challenge than anything for which the 3-Lisp project provided

preparation, but it also quickly became clear that semantics itself, and any ideal

of “semantical clarity,” would have to be rethought in the most fundamental

way, if we were even to approach, in artifi cial systems, the prowess and facil-

ity with which we people think about and fi nd intelligible the worlds in which

we are embedded. Some initial steps in these directions were reported in “The

Correspondence Continuum” and “Varieties of Self-Reference,” both written in

1986.�
15

 But as noted in the annotations to those papers included in this vol-

ume, I ultimately came up against what I came to call an “ontological wall,”�16

prompting me to delve even deeper into epistemology and metaphysics—a shift

in emphasis that led to the writing of On the Origin of Objects (O3) in 1996,�
17

and that continues to this day.

I do not believe it would be impossible to incorporate at least some of the les-

sons of O3 in a refl ective computational system—in part because of not believing

Refl ection & Semantics in LISP

RL · 55

that ‘computational’ is a restrictive property (see AOS). But until such a day—a

day that it is hard to know whether I myself will ever reach—the original motiva-

tions for developing 3-Lisp, the fundamental insights on which it is based, and

the original vision of Mantiq all remain waiting in the wings.

Notes

 �1

Sidebars and footnotes with text in sans-serif font, as in this case, contain comments
and refl ections added in 2010, rather than material that appeared in the original
paper.]

 �2 ‘Mantiq’ () is roughly the Arabic equivalent of the Greek logos (��
��)—mean-
ing speech, manner of speaking, eloquence, or logic «ref: The Hans Wehr Dictionary
of Modern Written Arabic). It is best known in the title Mantiq al-Tayr (),
a book of poems by the Sufi poet Farid al-Din Attar, sometimes translated as “The
Language of the Birds” but more commonly as “The Conference of the Birds.”

 �3 At least what philosophers would call its “narrow” meaning (cf. «ref»). Not only
did I quickly come to realise that a great variety of different things been called the
“meaning” of an expression or idea, over the years, but I have also come to believe
there never will be a “fi nal catalogue” of just which of the infi nite number of as-
pects of an intentional utterance or event can or do matter to its full signifi cance.
Even more challenging, from a design point of view, I believe that what we take
to be the “meaning” of such any such event or occassion (let alone what “type” it
instantiates) is likely contextually dependent not only on facts about the event so
taken, but on the circumstances of the situation in which the meaning is referred
to.

Moreover, whatever eventual story about meaning one were to adopt, it is likely
that a true “fusion” of meaning and structural identity would prove impossible
in the limit, since it is usually possible, given any such view, to construct examples
showing that meaning identity is uncomputable. Still, having some such goal as an
ideal can provide motivation and direction towards “higher-level” archictures of
intentional capacity.

 �4 The fi rst drafts of the report on 3-Lisp were designed to be chapter 13 of the infea-
sible Mantiq dissertation.

 �5 The idea can clearly be generalised, allowing one to “step sideways,” as it were, so
as to be able to see one whole tower as a unity, etc. But I say “fi rst good idea” be-
cause I was interested in a much more radical kind of refl ection, involving a whole-
sale “leap” across a chasm from one locus of intelligibility to another, which (by
defi nition) cannot be “viewed” from a vantage point accessible within the “prior”
epistemic architecture. The merest sketch of such an idea is mentioned in O3 «ref»;
I plan to explore it much more fully in Phase II of AOS «ref».

 �6 See “Varieties of Self-Reference,” Chapter ■■.

Indiscrete Affairs · IRL · 56

 �7 Reprinted here as chapter ■■. The dissertation itself was submitted as "Procedural
Refl ection in Programming Languages'; the change in title refl ected not only the
importance of thesis [R] (p. ((), but also my increasing awareness of the importance
of the semantical model on which the refl ective architecture was based.

 �8 Op. cit, pp. ■■.

 �9 «References»

 �10 For example, although the Wikipedia web page on refl ection in computer science
(below) credits the 3-Lisp work as introducing the notion of refl ection into pro-
gramming languages, it makes no mention of the rationalised semantics on which
the 3-Lisp design was based (in spite of discussion throughout the article about the
“subject matter” of programming constructs). Similarly, none of the ten examples
of refl ection in contemporary languages presented at the end of the article are de-
signed in terms of an explicit theorization of subject matter or declarative import.

 http://en.wikipedia.org/wiki/Refl ection_(computer_science)

 �11 Cf. Daniel P. Friedman and Mitchell Wand, “Reifi cation: Refl ection without
Metaphysics,” LISP and Functional Programming Conference, 1984, pp 348-55.

 �12 «References»

 �13 E.g., in “The Foundations of Computing,” reprinted here as chapter ■■.

 �14 See http://www.ageofsignifi cance.org

 �15 See chapter ■■ and chapter ■■.

 �16 E.g., see “The Foundations of Computing,” reprinted here as chapter ■■.

 �17 On the Origin of Objects, MIT Press, Cambridge, MA: 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

